第四章 観測されたボース凝縮体の諸特性

4.1 転移温度

第三章の図 3.14 より,ボース凝縮への相転移は,蒸発冷却の最終掃引周波数が $v_{\text{final}} = 0.68$ MHz のときに起きているとみられる.図4.1 (a)は,相転移直前の $v_{\text{final}} = 0.70$ MHz における吸収イメージ(光学密度分布)の断面であり,実際の密度分布を プロープ光の方向に積分したものに比例する.これをガウシアンでフィットすると*,その $1/e^2$ 幅は $w = (305\pm12)\mu$ m,よって速度分布の幅は $\sigma_v = w/2t = (5.55\pm0.21)$ mm/s (t = 27.5msは TOF 時間)となる.この幅から原子集団の温度は, $T = m\sigma_v^2/k_B = (324\pm25)$ nK と計算される.また,このときの原子数 Nは,吸収イメージから見積もるこ とができる(付録 F,(F.20)):

$$N = \frac{\pi}{2} \frac{\text{OD}_{\text{max}} w^2}{\sigma_{\text{abs}}} \quad .$$
 (4.1)

ここで σ_{abs} はプローブ光の実効吸収断面積^{**},OD_{max}は,ピークの光学密度である.この式に,図4.1 (a)より得られる値 $w = (305 \pm 12) \mu m$,OD_{max} = 1.2 を代入すると, $N = (1.2 \pm 0.1) \times 10^{6}$ と計算される.

一方,3次元調和ポテンシャル $V(x, y, z) = m(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2)/2$ における理想ボ ース気体の転移温度 T_c は,以下のように与えられる(付録A,(A.50)):

$$T_{\rm C} = 0.94 \frac{\hbar \overline{\omega}}{k_{\rm B}} N^{1/3} \quad (\, \hbar \tau t \, b \, , \, \overline{\omega} \equiv (\omega_x \omega_y \omega_z)^{1/3} \,) \tag{4.2}$$

本 実 験 で 用 い た 磁 気 ト ラ ッ プ の パ ラ メ ー タ ($B_x = B_y \equiv B_{\rho} = 175 \,\text{G/cm}$ $B_z^{"} = 185 \,\text{G/cm}^2$, $B_0 = 0.9 \,\text{G}$)より, $\omega_z = 2\pi \times 12.2 \,\text{Hz}$, $\omega_x = \omega_y \equiv \omega_{\rho} = 2\pi \times 166 \,\text{Hz}$, $\overline{\omega} = 2\pi \times 70 \,\text{Hz}$ である (付録 M.2 参照).よって,理論式(4.2)から転移温度は, $T_c = (330 \pm 10) \,\text{nK}$ と計算され,実験値とよい一致を示す.また,原子集団の磁気トラップ 内でのピーク密度は,付録 Bの式(B.16)より7×10¹³ cm⁻³と計算される.

^{*} つまり本来はボース分布であるものを,ボルツマン分布であると仮定する.この仮定は特に 相転移温度付近では正しくないが 吸収イメージングで観測するのは一方向に積分された密度分 布であり,この場合両者の差は顕著ではなくなる.詳しくは付録Fを参照.

^{**} $\sigma_{\text{eff}} = \overline{a^2} \cdot 6\pi \lambda^2 \simeq 1.45 \times 10^{-13} [\text{m}^2]$ で与えられる ($\overline{a^2} = 14/30$ は直線偏光時のクレブシュ・ゴルダン係数の二乗平均).詳しくは付録 I を参照.

図 4.1 磁気トラップから開放後 27.5ms の原子集団の Time-of flight 吸収イメージ(挿入) 及びその重力方向断面図.(a)ボース凝縮直前($\nu_{\text{final}}=0.70\text{MHz}$).実線はガウシアンフィット.分布の 1/e² 幅は $w = 305 \ \mu m$ ($\sigma_{\nu} = 5.6 \text{mm/s}$, T = 320 nK).(b)完全なボース凝縮体($\nu_{\text{final}} = 0.62 \text{MHz}$).実線は理論式(4.5)に基づくフィット.

4.2 ボース凝縮体の形

トーマス・フェルミ近似のもとでは、本実験で用いたような3次元軸対称調和ポテンシャル($\omega_{\rho} \equiv \omega_x = \omega_y >> \omega_z$)中のボース凝縮体の密度分布は、 $r^2 = x^2 + y^2$ とすると、

$$n(\mathbf{r}) = \frac{\mu - \frac{1}{2}m(\omega_{\rho}^{2}r^{2} + \omega_{z}^{2}z^{2})}{U_{0}}$$
(4.3)

となる (付録 E,式 (E,12)). ここで, μ はボース凝縮体の化学ポテンシャル, U_0 は原子間の相互作用の強さを表すパラメーターで,

$$U_0 = \frac{4\pi\hbar^2 a}{m} \tag{4.4}$$

と表される(付録 D,式(D.42)). ここで*a* はS波散乱長である.式(4.3)の密度分布は, 調和ポテンシャルを高さ *µ* で折り返したような形になっている(第二章,図 2.2).磁気ト ラップから開放された後のボース凝縮体の密度分布 *n*(*r*,*t*) は,単に各方向のスケールが変 わるだけになる(付録 E,式(E.34)):

$$n(\mathbf{r},t) = U_0 \lambda_\rho^2(t) \lambda_z(t) \left[\mu - \frac{1}{2} m \left\{ \left(\frac{\omega_\rho r}{\lambda_\rho(t)} \right)^2 + \left(\frac{\omega_z z}{\lambda_z(t)} \right)^2 \right\} \right] \quad .$$
 (4.5)

ここで, $\lambda_{\rho}(t)$, $\lambda_{z}(t)$ は時刻 *t*における垂直,及び水平方向の膨張率である.図4.1(b)は, 図4.1(a)と同様 TOF 時間 27.5ms における吸収イメージの重力方向(方向)断面であ る.実線は,式(4.5)に基づいて計算した曲線(付録 F,式(F.28))でフィットしたもの であり,実験データとよい一致を示している.

4.3 ボース凝縮体のエネルギー

時刻 *t* における垂直,及び水平方向の膨張率 $\lambda_o(t), \lambda_z(t)$ は, $\varepsilon \equiv \omega_z / \omega_o << 1$ のとき

$$\lambda_{\rho}(t) = \sqrt{1 + (\omega_{\rho}t)^2}$$
(4.6)

$$\lambda_{z}(t) = 1 + \varepsilon^{2} \left[\omega_{\rho} t \cdot \arctan(\omega_{\rho} t) - \ln \sqrt{1 + (\omega_{\rho} t)^{2}} \right]$$
(4.7)

で与えられる[49](付録 E,式 (E.41)).また,時刻 *t*における凝縮体の各方向の半幅(密 度が有限である範囲の半分の長さ)*d*_v(*t*)は,

$$d_{\nu}(t) = \lambda_{\nu}(t) \sqrt{\frac{2\mu}{m\omega_{\nu}^2}} \quad (\nu = \rho, z)$$
(4.8)

となる(付録 E.式(E.42)).図4.1(b)より得られる開放後 27.5ms のボース凝縮体の 方向半幅は, $d_{\rho} = (125\pm10) \mu$ m である.この値と,式(4.6),(4.8)より,ボース凝縮 体の初期の(磁気トラップ中での) 方向半幅は $d_{\rho}(0) = (4.4\pm0.3) \mu$ m,化学ポテンシャ ルは $\mu = (109\pm17)$ nKと計算される.よって,一粒子あたりのボース凝縮体のエネルギー は,付録 E,式(E.27)より, $5\mu/7 \cong 78$ nK となる.これは,(相互作用のない)調和振 動子の零点エネルギー $E_{HO} \equiv \hbar(\omega_x + \omega_y + \omega_z)/2 = 8.3$ nK の約 10 倍である.よって,本 実験で生成される凝縮体は,運動エネルギーを無視するトーマス・フェルミ近似が成り立 つ領域にあると言える.トーマス・フェルミ近似で計算されるボース凝縮体の諸物理量を, 調和振動子近似(相互作用を無視する近似)で計算したものと比較すると表4.1のように なる.

4.4 ボース凝縮体の原子数およびピーク密度

ボース凝縮体の粒子数 N₀ は,吸収イメージ画像より見積もることができる(付録 F, 式(F.30)):

$$N_0 = \frac{2\pi}{5} \frac{\mathrm{OD}_{\mathrm{max}} d_{\rho} d_{z}}{\sigma_{\mathrm{abs}}} \qquad .$$

この式に , 図 4 . 1 (b) より得られる値 OD_{max} = 3.6 , $d_{\rho} = (125 \pm 10) \, \mu \text{m}$, $d_{z} = (90 \pm 10) \, \mu \text{m}$ を代入すると , $N_{0} = (3.5 \pm 0.5) \times 10^{5}$ と計算される .

	原子数	サイズ	ピーク	ー粒子当りのエネルギー [nK]			
		[µm]	密度[cm ⁻³]	全部	運動	位置	相互作用
トーマス・ フェルミ近似	5×10^{5}	4.4 (半幅 <i>d</i>)	2.7×10^{14}	78		47	31
調和振動子近似 (相互作用無し)		1.2 (2)	4.2 × 10 ¹⁶	8	4	4	

表4.1 トーマス・フェルミ近似および調和振動子近似から計算したボース凝縮体の諸物理量

また,トーマス・フェルミ近似のもとでは,ボース凝縮体の化学ポテンシャル µ と粒子 数 № は以下の関係にある(付録 F,(F.34)):

$$\mu = \frac{1}{2}\hbar\overline{\omega} \left(15N_0 a \sqrt{\frac{m\overline{\omega}}{\hbar}}\right)^{2/5} = 1.48 \left(N_0 a \hbar^2 \overline{\omega}^3 m^{1/2}\right)^{2/5} .$$
(4.10)

この関係式より,粒子数を計算すると, $N_0 = (5 \pm 2) \times 10^5$ となる(吸収イメージから N_0 を計算する場合より誤差が大きくなるのは,式(4.8),(4.10)からわかるように N_0 が凝縮体の半幅 d の 5 乗に比例するからである).この値は,吸収イメージから計算された値 $N_0 = (3.5 \pm 0.5) \times 10^5$ と矛盾しない.

ボース凝縮体のピーク密度 n_0 は,式(4.3)より,

$$n_0 = n(0) = \frac{\mu}{U_0} \tag{4.11}$$

で与えられる . U_0 は式 (4.4) で与えられるが , これを計算するには S 波散乱半径 a を知る 必要がある . 文献[64]の値 a = 5.8 nm を用いると , $U_0 = 4.0 \times 10^{-22}$ [Kcm³] となる . この 値と , 4.3 節で計算した化学ポテンシャル μ の値を式 (4.11) に代入すると , $n_0 = (2.7 \pm 0.4) \times 10^{14}$ cm⁻³ となる . これは , 転移温度でのピーク密度の約 4 倍である .

4.5 トラップから開放されたボース凝縮体の時間発展

図4.2(a)は,磁気トラップから開放されたボース凝縮体が重力によって自由落下しな がら拡散する様子を,吸収イメージング法で撮影したものである.それぞれの画像は,そ れぞれ別々に生成された凝縮体のものである*.最初水平方向に長い凝縮体は,時間が経つ につれ垂直方向に長くなっていくのがわかる.これは,平均場エネルギー(原子間の斥力 相互作用エネルギー)が,主に鉛直方向の運動エネルギーに変換されるからである(詳し くは付録 E.4).

図 4.2 (b)の丸点は,図 4.2 (a)の各画像から読取ったボース凝縮体のアスペクト比 $\varepsilon(t) = d_{\rho}(t)/d_{z}(t)$ を,TOF時間の関数としてプロットしたものである.図中の実線は, トーマス・フェルミ近似におけるアスペクト比の時間発展を記述する式(付録 E, (E.43))

^{*} ここで用いている吸収イメージング法は基本的に破壊測定なので,単一の凝縮体の時間発展 を観測することはできない.位相イメージング法を用いれば,非破壊にボース凝縮体を観測する ことができるが[21],光学系が複雑になるため本実験では採用しなかった.

図4.2 磁気トラップから開放されたボース凝縮体の時間発展.(a)様々な TOF 時間(画像 下の数値)での吸収イメージ.(b)凝縮体のアスペクト比の時間発展.点は実験値.実線はト ーマス・フェルミ近似での理論式(4.12).破線は調和振動子近似での理論式(4.13).

$$\varepsilon_{\rm TF}(t) = \frac{d_{\rho}(t)}{d_z(t)} = \varepsilon_{\rm TF}(0) \frac{\lambda_{\rho}(t)}{\lambda_z(t)} \quad \text{trtl}, \quad \varepsilon_{\rm TF}(0) = \frac{\omega_z}{\omega_{\rho}}$$
(4.12)

より計算したものである.また図中の破線は,調和振動子近似におけるアスペクト比の時 間発展を記述する式(付録 E, (E.57))

$$\varepsilon_{\rm HO}(t) = \varepsilon_{\rm HO}(0) \sqrt{\frac{1 + \omega_{\rho}^2 t^2}{1 + \omega_z^2 t^2}} \quad \text{trtl}, \ \varepsilon_{\rm HO}(0) = \sqrt{\frac{\omega_z}{\omega_{\rho}}}$$
(4.13)

より計算したものである.式(4.12),(4.13)のどちらの場合でも,アスペクト比の時間 発展は,原子数 Mおよび斥力相互作用の強さ Ubに依らず,単に磁気トラップポテンシャ ルの形状(ω_z, ω_ρ)のみで決まっている.図4.2(b)を見ると,明らかにトーマス・フェル ミ近似における理論曲線(実線)の方が,実験データ(丸点)を定量的かつ定性的によく 再現している.しかし,実験データと理論曲線の間には,若干の系統的差異が見られる. この原因として,ホール素子による磁場勾配,曲率測定の不確実さ,またはイメージング システムの不完全さ(プロープ光と磁気トラップの対称軸が正確に直交していない)など が考えられる.

次に,ボース凝縮体が拡散する速度について考える.各方向の拡散速度 $v_{\rho}(t)$, $v_{z}(t)$ を,ボース凝縮体の幅 $d_{\rho}(t)$, $d_{z}(t)$ の時間微分で定義する.これはボース凝縮体の速度分布の半幅に対応する.トーマスフェルミ近似のもとでは,拡散速度 $v_{\rho}(t)$, $v_{z}(t)$ は以下の式に従って時間発展する[48](付録 E,式(E.45),(E.46)):

$$v_{\rho}(t) \equiv \frac{d}{dt} d_{\rho}(t) = v_{\rho,\infty} \cdot \frac{\omega_{\rho} t}{\sqrt{1 + \omega_{\rho}^{2} t^{2}}}$$

$$v_{z}(t) \equiv \frac{d}{dt} d_{z}(t) = v_{z,\infty} \cdot \frac{2}{\pi} \arctan \omega_{\rho} t$$
(4.14)

ここで, $v_{\rho,\infty}$, $v_{z,\infty}$ は方向, z方向の漸近速度で,

$$v_{\rho,\infty} = \omega_{\rho} d_{\rho}(0)$$

$$v_{z,\infty} = \frac{\pi}{2} \omega_{\rho} \varepsilon^{2} d_{z}(0)$$
(4.15)

と表される.ここで, $\varepsilon = \omega_z / \omega_\rho$ である.これらは,ボース凝縮体の初期の幅と,磁気ト ラップ周波数のみで決まる.本実験の場合,磁気トラップ周波数は $\omega_z = 2\pi \times 12.2$ Hz, $\omega_\rho = 2\pi \times 166$ Hz,よって $\varepsilon = 0.074$ である.また,4.3節で求めたように,ボース凝縮 体の初期の 方向幅は $d_\rho(0) = 4.4 \mu m$,これからz方向幅は $d_z(0) = d_\rho(0) / \varepsilon = 59 \mu m$ と 推定される.これらのパラメータを式(4.15)に代入すると, $v_{\rho,\infty} = 4.5$ mm/s, $v_{z,\infty} = 0.53$ mm/s と計算される.これらの値は,一光子反跳速度 $v_r = \hbar k / M = 5.88$ mm/s と 0.77 倍(方向)および 0.09 倍(z方向)である.また,それぞれの方向における運動エ ネルギーの比は, $v_{\rho,\infty}^2 : v_{z,\infty}^2 = 1: (\pi \varepsilon / 2)^2 = 1:0.013$ となる.つまり,最初ボース凝縮体が 保有していた平均場(相互作用)エネルギーの 98.7%は 方向,1.3%はz方向の運動エネ ルギーに変換される.

図 4.3 は,式(4.14)から計算した 方向, z 方向それぞれの拡散速度の時間発展を表 している.両者とも 1~2 ms 程度の時定数で漸近速度に近づいていくのがわかる.この時 定数は,式(4.14)から明らかなように 方向の角振動周波数 ω_{ρ} の逆数程度である.拡散 から 5 ms 後における拡散速度は,漸近値の約 98%に達し,ボース凝縮体の平均場エネルギ ーの約 96%が運動エネルギーに変換される.

図4.3 磁気トラップから開放されたボース凝縮体の拡散速度の時間発展(式(4.14)より 計算).これらの速度は,ボース凝縮体の速度分布の幅に対応する.太い実線が 方向,太 い破線は z 方向の拡散速度を表す.細い点線はそれぞれの漸近速度(4.5mm/s および 0.53mm/s)を表す.細い実線は,一光子反跳速度(5.88mm/s)を表す.

4.6 ボース凝縮体の寿命

蒸発冷却によって生成されたボース凝縮体の寿命は,その後の条件により大きく異なる. 蒸発冷却終了後,(a)rf磁場を切った場合,(b)最終掃引周波数のままrf磁場を照射し続けた 場合,(c)rf磁場を切り,断熱冷却を施した(1秒程度かけてバイアス磁場を上げ,等方的 な磁気トラップに移行した)場合,それぞれについてボース凝縮体の寿命特性を調べた. 図4.4は,それぞれの場合について,蒸発冷却後ボース凝縮体が消失していく様子を吸収 イメージング法で(撮影までの時間を様々に変えて)観測したものである.

(a) rf 磁場を切った場合

吸収イメージを見ると,ボース凝縮体が熱的原子へと変換しているのがわかる.1.5 秒 後にはボース凝縮体は消滅してしまい,残った原子集団の温度は数百nK程度になっている. この原子集団の加熱は,バックグラウンドガスとの衝突によって大きな運動エネルギーを 獲得した原子が,凝縮体内の原子と何度も弾性衝突を繰り返すために起こると思われる(バ ックグラウンドガスとの衝突によって決まる磁気トラップそのものの寿命は1分程度あ る).

(b) rf磁場を照射し続けた場合

熱的原子をトラップから切り取る rf 磁場を照射し続けているので,ボース凝縮体のみが 磁気トラップ内に留まれる状態になっている.よって,吸収イメージにはボース凝縮体の みが観測されている.そして(a)の場合と違い,凝縮体は 10 秒程度の寿命を持っている.こ れは,加熱の原因となる運動エネルギーの高い原子が,rf 磁場によりトラップからすみや かに取り除かれるためと思われる.

(c) rf 磁場を切り, 断熱冷却を施した場合

ボース凝縮体を断熱冷却するためには,磁気トラップのバイアス磁場を上げる必要があ るが,このときボース凝縮体を切り取らないようにrf磁場を照射し続けるには,変化する バイアス磁場に合わせてrf周波数を変化させなくてはならない.これは実験手法上難しい ので,rf磁場を切った場合のみ行った.断熱冷却の結果,ボース凝縮体の形は,等方的な 球状になり,拡散後もその形を保つ.驚いたことに,rf磁場を切っているにもかかわらず, 凝縮体は数十秒という長い寿命を持つ.逆に言えば,磁気トラップに強く閉じ込められた 凝縮体は,加熱の効果を強く受けやすいということになる.同様の結果は,JILAのグルー プが⁸⁷Rb:|2,+2>の凝縮体においても見出しているが[32],その詳しい理由については,現 在のところまだ知られていない.

(b)

(c)

図4.4 蒸発冷却後, (a)rf 磁場を切った場合, (b)最終掃引周波数(0.63MHz)のまま rf 磁場を照射し続けた場合, (c)rf 磁場を切り断熱冷却を施した場合, それぞれのボース凝縮体の Time-of-flight 吸収イメージ.各画像左下の数値は,蒸発冷却終了から磁気トラップ off までの時間. TOF 時間は 27.5ms. 画像のサイズは 1mm × 1mm.