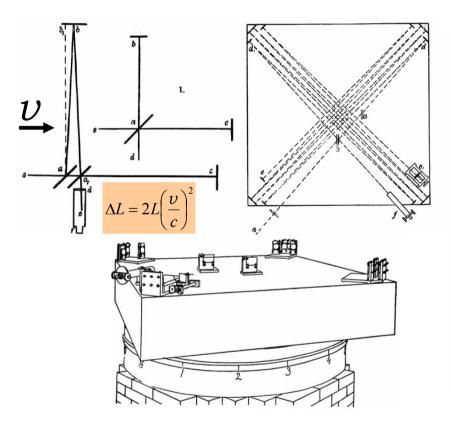
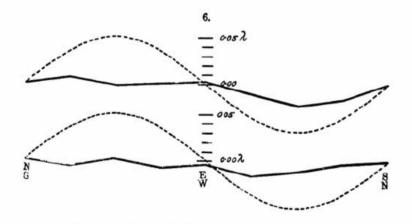
特殊相対性理論のエッセンス

平成26年10月24日 「量子と光」第3回 島井寿夫

マイケルソン・モーレーの実験(1887)



The results of the observations are expressed graphically in fig. 6. The upper is the curve for the observations at noon, and the lower that for the evening observations. The dotted curves represent one-eighth of the theoretical displacements. It seems fair to conclude from the figure that if there is any dis-



placement due to the relative motion of the earth and the luminiferous ether, this cannot be much greater than 0.01 of the distance between the fringes.

http://www.aip.org/history/exhibits/gap/PDF/michelson.pdf

地球上の光速は光の進行方向に依存しなかった!

Einstein1905年論文 「運動物体の電気力学について」

3. Zur Elektrodynamik bewegter Körper; von A. Einstein.

Daß die Elektrodynamik Maxwells - wie dieselbe gegenwärtig aufgefaßt zu werden pflegt - in ihrer Anwendung auf bewegte Körper zu Asymmetrien führt, welche den Phänomenen nicht anzuhaften scheinen, ist bekannt. Man denke z. B. an die elektrodynamische Wechselwirkung zwischen einem Magneten und einem Leiter. Das beobachtbare Phänomen hängt hier nur ab von der Relativbewegung von Leiter und Magnet. während nach der üblichen Auffassung die beiden Fälle, daß der eine oder der andere dieser Körper der bewegte sei, streng voneinander zu trennen sind. Bewegt sich nämlich der Magnet und ruht der Leiter, so entsteht in der Umgebung des Magneten ein elektrisches Feld von gewissem Energiewerte, welches an den Orten, wo sich Teile des Leiters befinden, einen Strom erzeugt. Ruht aber der Magnet und bewegt sich der Leiter, so entsteht in der Umgebung des Magneten kein elektrisches Feld, dagegen im Leiter eine elektromotorische Kraft, welcher an sich keine Energie entspricht, die aber - Gleichheit der Relativbewegung bei den beiden ins Auge gefaßten Fällen vorausgesetzt - zu elektrischen Strömen von derselben Größe und demselben Verlaufe Veranlassung gibt, wie im ersten Falle die elektrischen Kräfte.

ON THE ELECTRODYNAMICS OF MOVING BODIES

By A. EINSTEIN

June 30, 1905

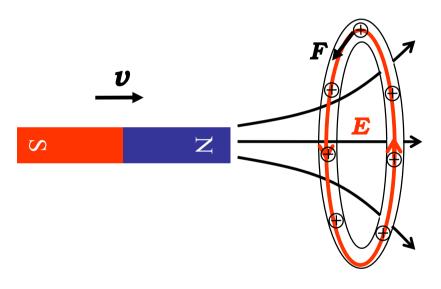
It is known that Maxwell's electrodynamics—as usually understood at the present time—when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor. The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated. But if the magnet is stationary and the conductor in motion, no electric field arises in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force, to which in itself there is no corresponding energy, but which gives rise—assuming equality of relative motion in the two cases discussed—to electric currents of the same path and intensity as those produced by the electric forces in the former case.

Annalen der Physik **322**, 891–921(1905)

http://www.fourmilab.ch/etexts/einstein/specrel/www/

誘導電流の起源①

磁石がコイルに対して動く場合



磁場が時間変化している空間には、

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

を満たす誘導電場が生じる

誘導起電力バは、

$$V = \oint_C \mathbf{E} \cdot d\mathbf{r} = \int_S (\nabla \times \mathbf{E}) \cdot d\mathbf{S}$$

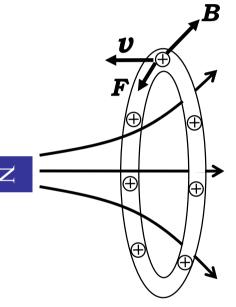
$$= \int_S \left(-\frac{\partial \mathbf{B}}{\partial t} \right) \cdot d\mathbf{S}^{\text{(電磁誘導の法則)}}$$

$$= -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{S} = -\frac{\partial \Phi}{\partial t}$$

レンツの法則

誘導電流の起源②

コイルが磁石に対して動く場合

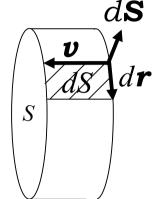


運動するコイル内の電荷には ローレンツカ

$$F = qv \times B$$

が働く

CD



誘導起電力がは、

$$V = \frac{1}{q} \oint_{C} \mathbf{F} \cdot d\mathbf{r} = \oint_{C} (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{r}$$

$$= -\oint_{C} \mathbf{B} \cdot (\mathbf{v} \times d\mathbf{r}) = -\int_{\Box \mathbf{l} \setminus \mathcal{N}} \mathbf{b} \cdot \mathbf{l} \mathbf{b}$$

$$= -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{S} = -\frac{\partial \Phi}{\partial t}$$

レンツの法則

アインシュタインが掲げた2つの仮説

Examples of this sort, together with the unsuccessful attempts to discover any motion of the earth relatively to the "light medium," suggest that the phenomena of electrodynamics as well as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest rather that, as has already been shown to the first order of small quantities. the same laws of electrodynamics and optics will be valid for all frames of reference for which the equations of mechanics hold good. We will raise this conjecture (the purport of which will hereafter be called the "Principle of Relativity") to the status of a postulate, and also introduce another postulate, which is only apparently irreconcilable with the former, namely, that light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body. These two postulates suffice for the attainment of a simple and consistent theory of the electrodynamics of moving bodies based on Maxwell's theory for stationary bodies. The introduction of a "luminiferous ether" will prove to be superfluous inasmuch as the view here to be developed will not require an "absolutely stationary space" provided with special properties, nor

Annalen der Physik 322, 891-921(1905)

(http://www.fourmilab.ch/etexts/einstein/specrel/www/)

特殊相対性理論

<二つの基本原理>

物理法則はすべての慣性系に対して同じ形で表される(相対性原理)

真空中の光の速さは光源の運動状態に無関係である(光速不変の原理)

特殊相対性理論からの奇妙な帰結

- ローレンツ収縮(動いている物の長さは縮む)
- 時間の遅れ(動いている時計は遅れる)
- ・ 同時刻の相対性(2つの事象が同時かどうかは、観測者の運動に依存する)
- 質量の増大(質量とエネルギーの等価性)

すべて測定の仕方を定義してはじめて理解できる。

(例)速さvで動いている列車の長さを どのように測るか?

「列車と一緒に走りながら測る」

「列車が駅に止まっているすきに測る」

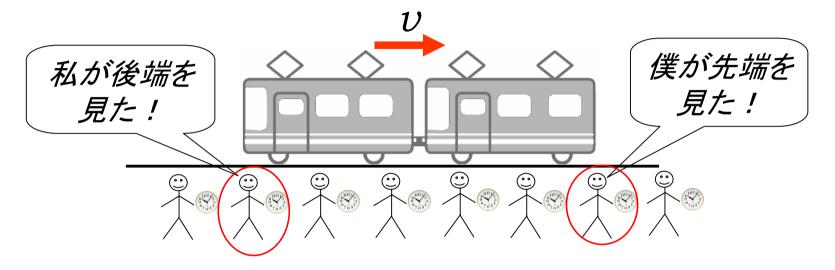
「列車に乗っている人に測ってもらう」

(相対論的に)正しい測定法その1

時計を持ってある地点で待ち構え、列車 の先端と後端が通過する時刻を測定する

(列車の長さ)=(速さ)×(通過時間)= $v(t_2-t_1)$

(相対論的に)正しい測定法その2

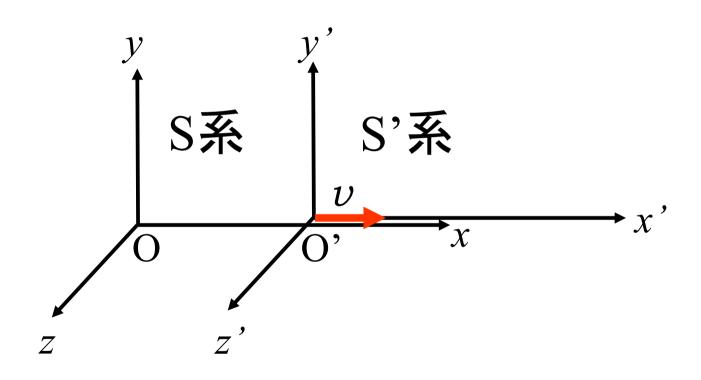


全員が時計を持ち、線路上の様々な地点で待ち構える。同時刻に列車の先端と後端を見た観測者(の座標)を教えてもらう。

(列車の長さ)=(先端の座標)-(後端の座標)

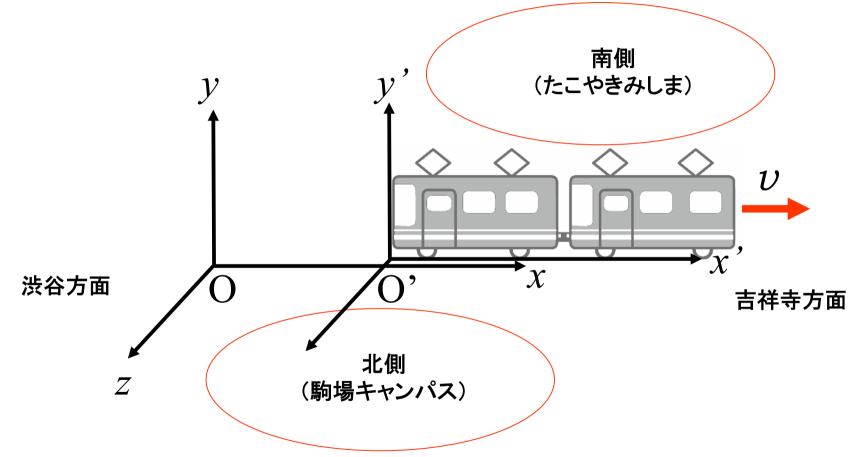
同時刻における

二つの慣性系

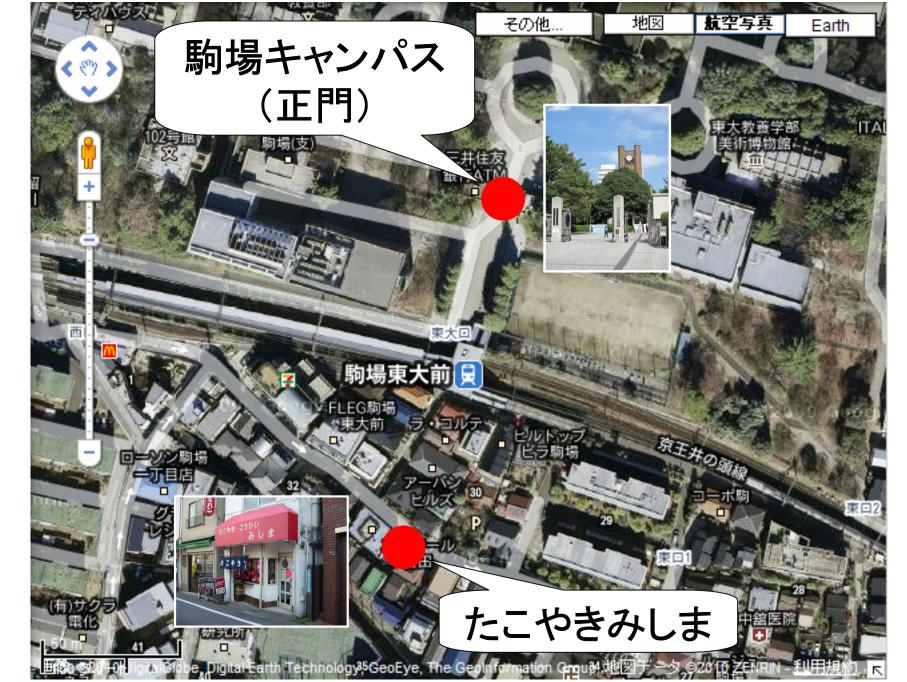


S'系はS系に対してx軸正の方向に速さvで移動している

二つの慣性系(イメージ重視)



井の頭線は我々(駒場キャンパス)に対して吉祥寺の方向 に速さ*v*で移動している



問題提起

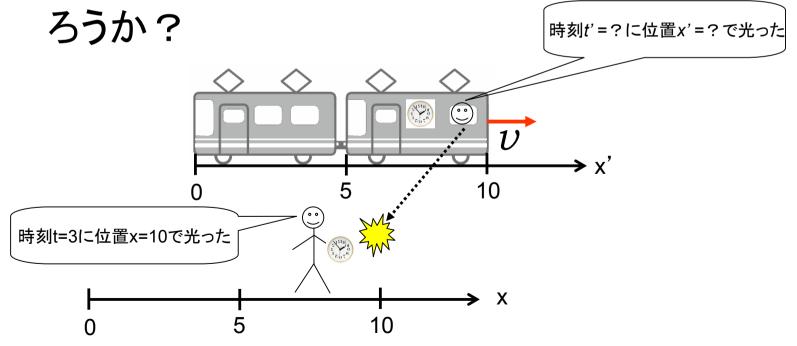
• S系において時刻t、位置xで起きた事象は、S'系においていつ(t') どこで(x')観測されるのだろうか?

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

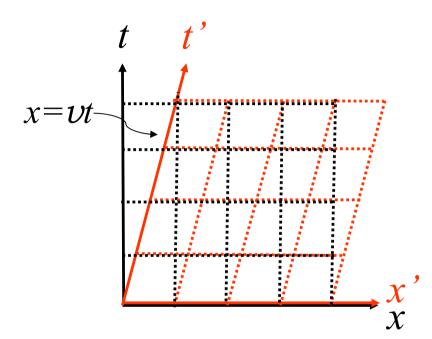
(x, t)から(x', t')への写像(-次変換行列)の具体形が知りたい。

問題提起(イメージ重視)

 駒場キャンパスにおいて時刻t、位置xで 起きた事象は、井の頭線に乗った人から 見たらいつ(x')どこで(t')観測されるのだ



我々の常識(ガリレイ変換)

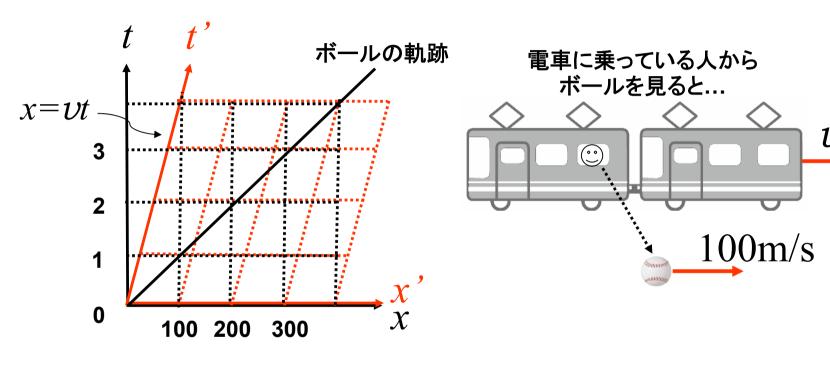


S系における x=vtの 線が、S'系における \Rightarrow x'=x-vtx'=0 の線

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} 1 & -\upsilon \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

ガリレイ変換

速度のガリレイ変換



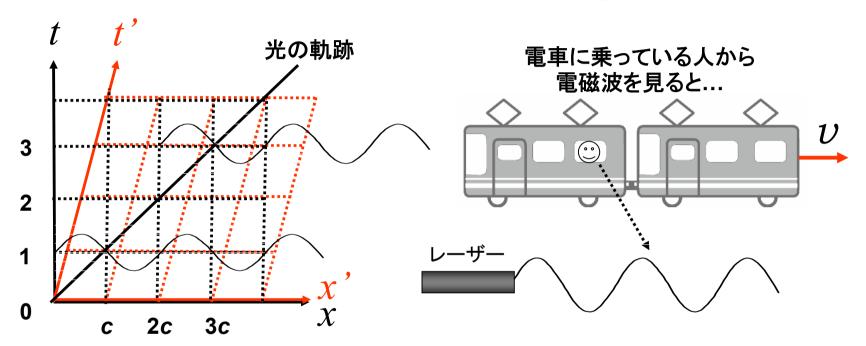
$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} 1 & -v \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 100 \\ 1 \end{pmatrix} = \begin{pmatrix} 100-v \\ 1 \end{pmatrix} \qquad v' = \frac{x'}{t'} = \frac{100-v}{1} = \frac{100-v}{1}$$

ガリレイ変換

$$v' = \frac{x'}{t'} = \frac{100 - v}{1} = 100 - v$$

遅く見える!

電磁波のガリレイ変換



S系で見た電磁波

$$E(x,t) = E_0 \cos(kx - \omega t)$$

位相速度は

$$\frac{\omega}{k} = c \quad \left(c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \right)$$

ガリレイ変換

S'系で見た電磁波

$$\boldsymbol{E}(x',t') = \boldsymbol{E}_0 \cos(kx' - (\omega - k\upsilon)t)$$

位相速度は

$$\frac{\omega - kv}{k} = c - v$$

マクスウェル方程式と矛盾!

我々(Einstein)の目標

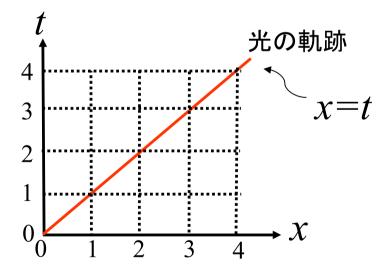
相対性原理と光速不変の原理を同時に満たすような、S系とS'系間の時空座標の一次変換行列を新たに求める。

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

$$\begin{pmatrix} 1 & -v \\ 0 & 1 \end{pmatrix}$$
ガリレイ変換

準備:時間の単位の再定義

後の議論を簡単にするため、1/c秒を、あらためて 1秒と定義し、光は1秒間に1m進むものとする。 (光速cを1m/秒とする)



注)元の単位に戻るには、 $t \rightarrow ct, v \rightarrow \frac{v}{c}$ と置き換えればよい

条件 その1(光速不変の原理)

S系では時刻 t = 0 に位置 x = 0より発せられた光は、1秒後(t = 1)に位置 x = 1 に到達する。この現象をS'系で観測すると、

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} A+B \\ C+D \end{pmatrix}$$

S' 系での光速も1であるから

$$\frac{x'}{t'} = \frac{A+B}{C+D} = 1$$

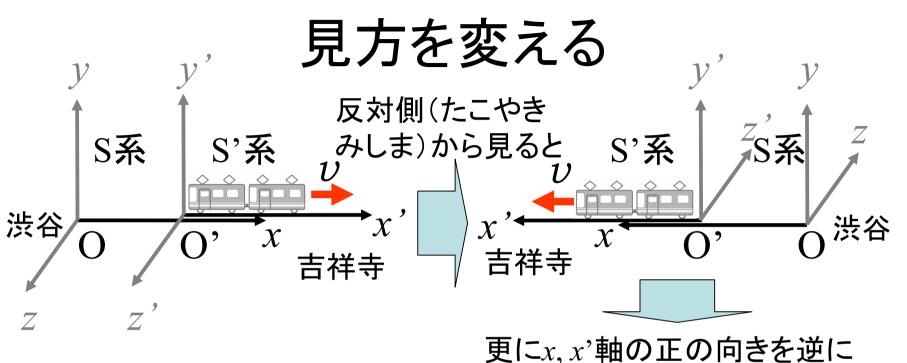
$$\therefore A+B = C+D\cdots 1$$

条件 その2(相対速度)

S'系の原点(x'=0)は、S系から見て速度vで動いている。したがって、S系の時空座標(x, t) = (v, 1)のS'系におけるx'座標はOである(t'座標は不明)

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} v \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ ? \end{pmatrix}$$

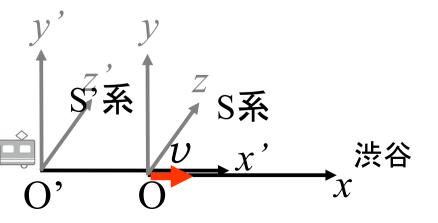
$$\therefore Av + B = 0 \cdots (2)$$



吉祥寺

定義すると

x, x'軸の正の向きを逆に 定義すると、S系とS'系 の立場が入れ替わる!



条件 その3(相対性原理)

S'系がS系に対してx軸正の方向に速度vで移動している状況は、x, x'軸の正の向きを逆に定義すれば、S系がS'系に対してx'軸正の方向に速度vで移動している状況とみなすこともできる。どちらの見方でも、相対性原理により、物理法則(つまり一次変換行列)は同じはずである。

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} \xrightarrow{x' \to -x'} \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \begin{pmatrix} x' \\ t' \end{pmatrix}$$

$$\begin{pmatrix} x' \\ t' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} \longleftrightarrow \begin{pmatrix} x \\ t \end{pmatrix} = \frac{1}{AD - BC} \begin{pmatrix} D & -B \\ -C & A \end{pmatrix} \begin{pmatrix} x' \\ t' \end{pmatrix}$$

ここでx, x'軸の正の向きを逆に定義すると

$$\longleftrightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} = \frac{1}{AD - BC} \begin{pmatrix} D & -B \\ -C & A \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ t' \end{pmatrix}$$

$$\longleftrightarrow \begin{pmatrix} x \\ t \end{pmatrix} = \frac{1}{AD - BC} \begin{pmatrix} D & B \\ C & A \end{pmatrix} \begin{pmatrix} x' \\ t' \end{pmatrix} \\ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \qquad 3$$

以上、まとめると、

$$A+B=C+D\cdots$$
① (光速不変の原理)

$$Av + B = 0 \cdots 2$$
 (相対速度で決まる条件)

$$\frac{1}{AD-BC} \begin{pmatrix} D & B \\ C & A \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdots ③ (相対性原理)$$

1、2、3より

$$A = D = \frac{1}{\sqrt{1 - v^2}}, \quad B = C = -\frac{v}{\sqrt{1 - v^2}}$$

現実(SI単位系)に戻ろう。

$$t \to ct$$
, $v \to \frac{v}{c}$, $t' \to ct'$, $v' \to \frac{v'}{c}$ の置き換えをすると

$$\begin{pmatrix} x' \\ ct' \end{pmatrix} = \frac{1}{\sqrt{1 - v^2/c^2}} \begin{pmatrix} 1 & -v/c \\ -v/c & 1 \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix}$$

$$x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}}$$

$$t' = \frac{t - vx/c^2}{\sqrt{1 - v^2/c^2}}$$

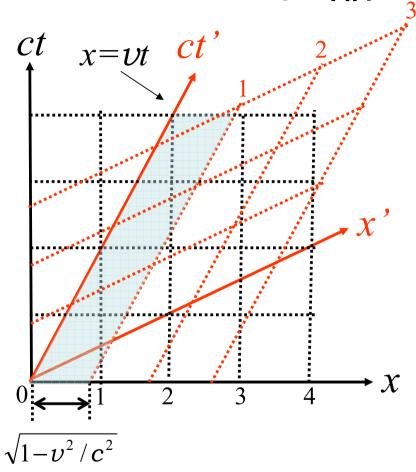
$$t = \frac{t - vx/c^2}{\sqrt{1 - v^2/c^2}}$$

$$t = \frac{t' + vx'/c^2}{\sqrt{1 - v^2/c^2}}$$

ローレンツ変換

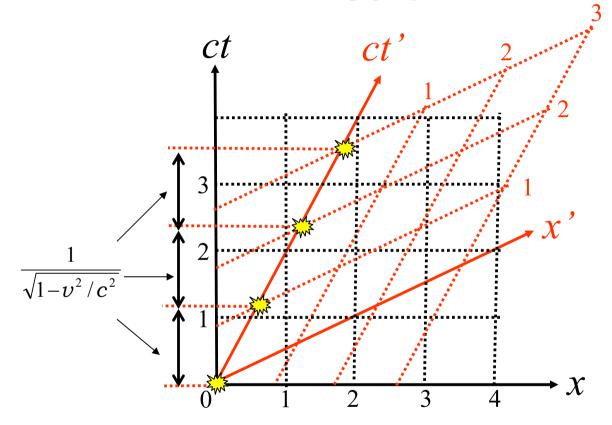
ローレンツ逆変換

ローレンツ収縮



S'系で長さLの物体は、S系では長さが $L\sqrt{1-v^2/c^2}$ (< L) に見える

時間の遅れ



S'系で x'=0 にある フラッシュランプは、 S'系の時計では1秒 おきに点灯。

S系の時計では

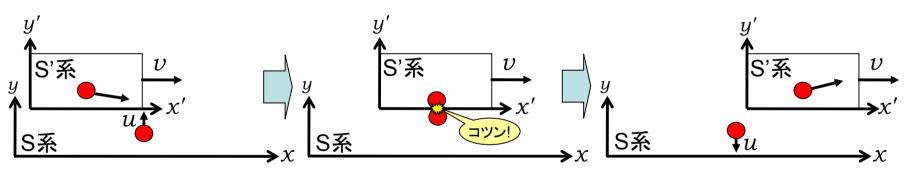
$$\frac{1}{\sqrt{1-v^2/c^2}} (>1)$$

秒おきに点灯。

S'系の時間は、S系からみると $\frac{1}{\sqrt{1-v^2/c^2}}$ (>1) 倍遅く流れているように見える

質量の増加(相対論的質量)

それぞれの系で質量 m_0 の球を速さu(例えば1m/sで)+y(-y') 方向に運動しているとする。衝突後、S系の球が-y 方向に速さuで運動したとすると、相対性原理より、S'系の球も、**S'系で見れば**+y' 方向に速さuで運動する。



しかし、 $\underline{S系から見ると}$ 、S'系の時計は $\overline{\sqrt{1-v^2/c^2}}$ 倍遅れているので、S'系の球はy軸方向の速さが $u\sqrt{1-v^2/c^2}$ で近づき、 $u\sqrt{1-v^2/c^2}$ で遠ざかるように見える。

S系から見た、S'系の球の質量をmとすると、S系における運動量保存則より

$$m_0 u - mu \sqrt{1 - v^2/c^2} = -m_0 u + mu \sqrt{1 - v^2/c^2} \rightarrow m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$
(衝突前)

ファインマン物理学 I「力学」

特殊相対性理論

15-1 相対性原理

200 年以上もの間、ニュートンの運動方程式は、自然を正しく記述 するものであると信じられてきた。これらの法則にあやまりがあると いうことがはじめて発見されたとき、同時に、それを修正する方法も 発見されたのである。このあやまりを発見したのも、修正を加えたの も、アインシュタインであって、1905 年のことである。

ニュートンの第2法則は,

$$F = \frac{d(mv)}{dt}$$

という方程式によってあらわされるが、それは m が一つの定数である という暗黙の仮定の上にたっていた。しかし現在ではこの仮定は正し くはなく、一つの物体の質量は速度が大きいほど大きくなることがわ かっている。アインショタインの修正式では、m は

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$
(15. 1)

である。ここに "静止質量" m_0 は、物体が運動していないときの質量。e は光の速さ、およそ 3×10^5 km/秒すなわちおよそ 186,000 マイル/秒 である。

このことを覚え、問題がとけさえすればもうそれでいいという人達 にとっては、相対性理論とはこれだけのものである――質量に補正を 入れて、ニュートンの力学に変更を加えるだけのものである。上の式

質量とエネルギーの等価性

$$F = \frac{dp}{dt}$$
に従うとする。

$$p \equiv m\upsilon = \frac{m_0\upsilon}{\sqrt{1-\upsilon^2/c^2}}$$

この粒子のエネルギーの変化 dE は、カF がこの粒子にした仕事 Fdx に等しいから

$$dE = Fdx = \frac{dp}{dt}dx = vdp$$

したがって、この粒子のエネルギーは、両辺を積分して、次のように表せる。

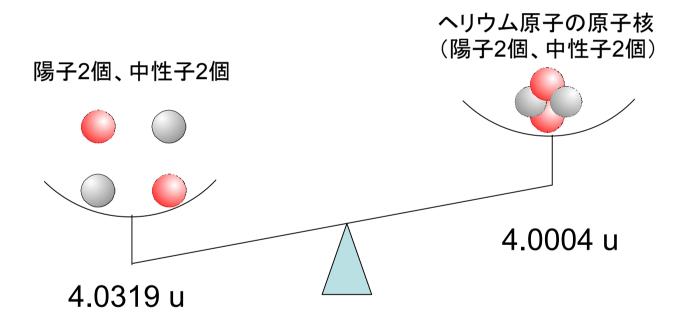
$$E = \int_0^p v dp = \sqrt{m_0^2 c^4 + p^2 c^2} - m_0 c^2 = mc^2 - m_0 c^2$$

この粒子が元からエネルギー m_0c^2 (静止エネルギー)を持っていたと考えると、

$$E = mc^2$$

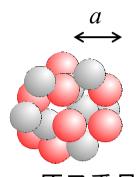
電荷と質量の大きな違い

質量は保存しない!(質量素量などない)



 $(u = {}^{12}C/12 = 1.66x10^{-27}kg)$ 原子質量単位 $E = mc^2$ (質量はエネルギーの一形態)

原子核の静電エネルギー

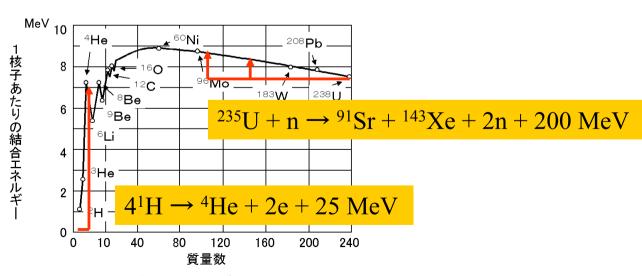


$$U = \frac{(eZ)^2}{4\pi\varepsilon_0} \frac{3}{5a}$$

$$U = \frac{(eZ)^2}{4\pi\varepsilon_0} \frac{3}{5a}$$
 $a = r_0 A^{1/3}, \quad r_0 = 1.2 \times 10^{-15} \,\mathrm{m}$

$$Z$$
:原子番号
 A :質量数

$$U = 1.15 \frac{Z^2}{A^{1/3}} \times 10^{-13} \text{ J} = 0.72 \frac{Z^2}{A^{1/3}} \text{ MeV}$$



結合エネルギー

ニュートン力学との関係

相対論的運動方程式

対論的運動方程式
$$F = \frac{dp}{dt} = \frac{d}{dt} \left(\frac{m_0 v}{\sqrt{1 - v^2/c^2}} \right)$$
 $v << c$

ニュートン力学における運動方程式

$$E = mc^2 = \frac{m_0}{\sqrt{1 - v^2 / c^2}} c^2 = m_0 c^2 \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$$
相対論的エネルギー $\sqrt{1 - v^2 / c^2}$
$$\cong m_0 c^2 \left(1 + \frac{v^2}{2c^2}\right) = m_0 c^2 + \frac{1}{2} m_0 v^2$$

ニュートン力学における運動エネルギー

静止した粒子の振動数

粒子の全エネルギー

$$E = \sqrt{m_0^2 c^4 + p^2 c^2} = mc^2 \left(m = \frac{m_0}{\sqrt{1 - v^2 / c^2}} \right)$$

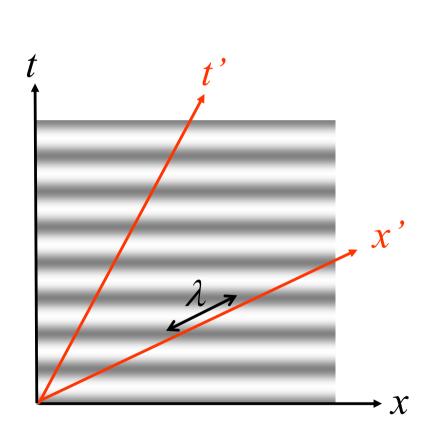
アインシュタインの関係式

$$E = h\nu = \hbar\omega$$
 $\left(\hbar = \frac{h}{2\pi}\right)$

静止した粒子のエネルギーに対応する振動数

$$\hbar\omega = m_0 c^2 \to \omega = \frac{m_0 c^2}{\hbar}$$

S系の波の振動をS'系で見ると



$$<$$
S系 $>$ 空間依存性なし $e^{-i\omega t}=e^{-irac{m_0c^2}{\hbar}t}$ $<$ S' $<$ S' $>$ \downarrow ローレンツ逆変換 $t=rac{t'+vx'/c^2}{\sqrt{1-v^2/c^2}}$ $e^{-irac{m_0c^2}{\hbar}t}=e^{-irac{mc^2}{\hbar}t'}e^{-irac{mv}{\hbar}x'}$ $e^{-irac{mv}{\hbar}}$ $\lambda=2\pi$ より $\lambda=rac{h}{\hbar}$

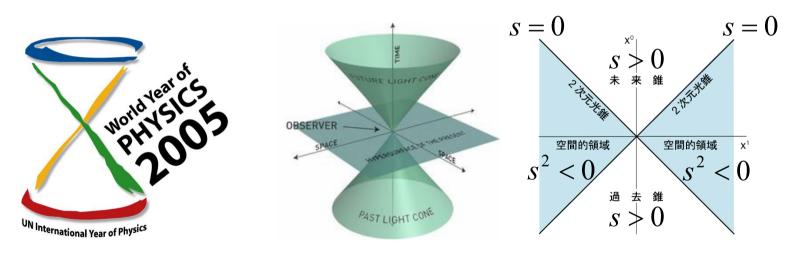
ド・ブロイの関係式

mv

(参照)ファインマン物理学V「量子力学」第7章

時空距離(インタバル)

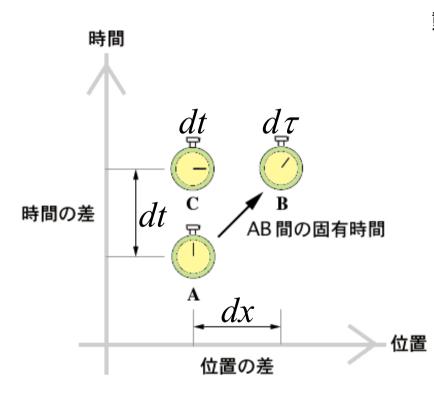
$$s^2 \equiv (ct)^2 - x^2 - y^2 - z^2$$



http://en.wikipedia.org/wiki/File:World_line.png

時空距離はローレンツ不変量(どの慣性系から見ても同じ値を持つ)

固有時(ローレンツ不変量)



動いている時計のインタバル

$$s^{2} \equiv (cdt)^{2} - (dx)^{2} = (cdt)^{2} - (vdt)^{2}$$

時計と共に動いている系からみたインタバル

$$s'^2 \equiv (cd\tau)^2 - (dx')^2 = (cd\tau)^2$$

インタバルはローレンツ不変量なので

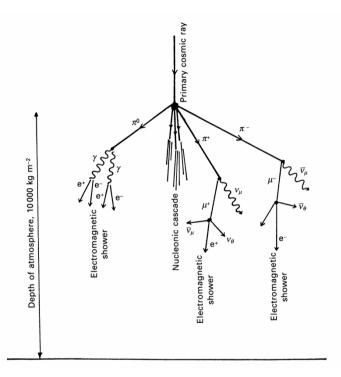
$$(cd\tau)^2 = (cdt)^2 - (vdt)^2$$

$$\to d\tau = dt\sqrt{1 - v^2/c^2}$$

固有時間(ローレンツ不変量)

http://homepage2.nifty.com/einstein/contents/relativity/contents/relativity216.html

のびるミューオンの寿命



地上で観測される寿命

上で観測される寿印 $d\tau = dt\sqrt{1-v^2/c^2} \to dt = \frac{d\tau}{\sqrt{1-v^2/c^2}} \approx 200d\tau$ (v = 0.999999c)

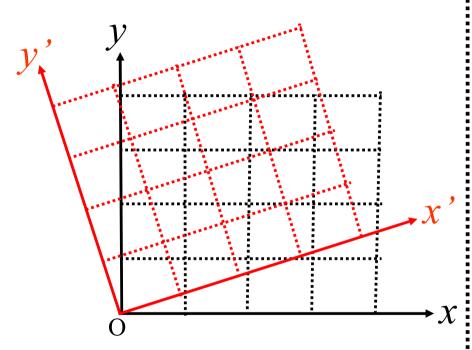
宇宙線 きる。ミューオンは寿命 (平均約1.5マイクロ秒) が つきると崩壊する。この時 間では、光速で飛んでも 450メートルしか進むこと ができず、ほとんどのミュ ーオンは地表に届かないは ずだ。しかし、光速の 99.999%の速度で飛ぶミュ -オンでは、時間の進み方 が200倍程度にのびる。そ のため平均寿命も200倍に ミューオンは本来の寿命では のびるので、多くのミュー 1キロメートルも飛べない オンが地表に届く。 寿命がのびたミューオンは 10 数キ ロメートルを飛ぶことができる

のびるミューオンの寿命 宇宙線が大気に衝突すると、 ミューオンという粒子がで

静止したミューオンの寿命(2.2 μ s)

ユークリッド空間とミンコフスキー空間

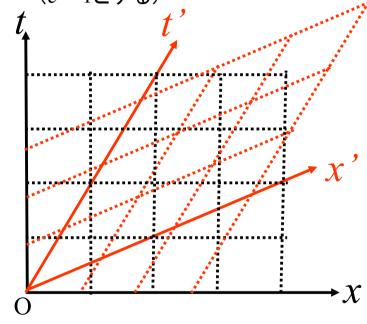
ユークリッド空間における座標変換



$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

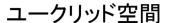
$$x'^2 + y'^2 = x^2 + y^2$$
 空間距離不変

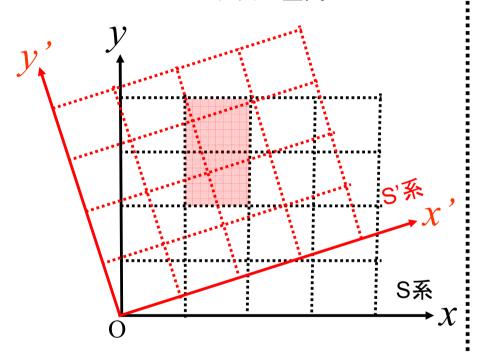
ミンコフスキー空間における座標変換 $(c = 1 \ge t = 3)$



$$t'^2 - x'^2 = t^2 - x^2$$
 時空距離不変

幅(width)と奥行き(depth)

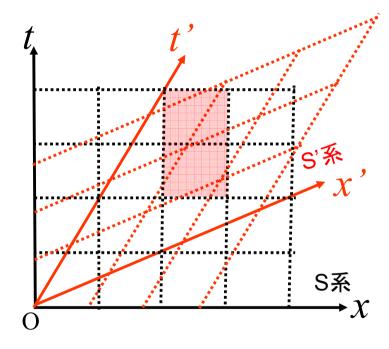




S系:幅1、奥行き2

S'系:幅1.5、奥行き2.3

幅や奥行きは基本的な量ではない (見ている角度に依存する) ミンコフスキー空間 (c=1とする)

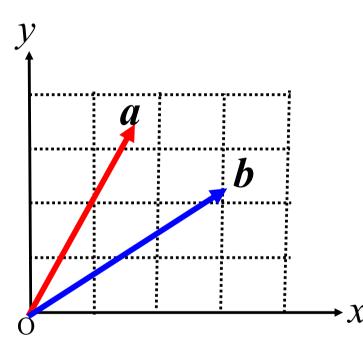


S系:存在した空間の幅1、持続時間2 S'系:存在した空間の幅2.3、持続時間3

空間や時間は基本的な量ではない (見ている速度に依存する)

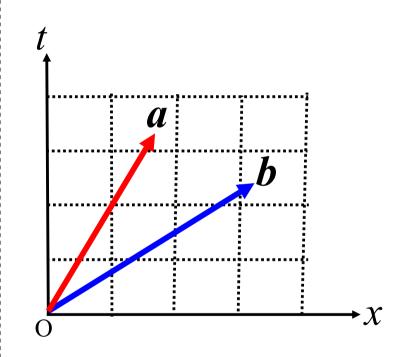
スカラープロダクト(座標に依存しない量)





$$a_{\mu}b_{\mu} \equiv \sum a_{\mu}b_{\mu} \equiv a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}$$

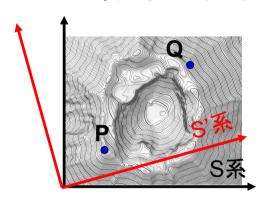
アインシュタインの縮約(同じ添え字が現れたら、 すべての成分について和を取る) ミンコフスキー空間 (c=1とする)



$$a_{\mu}b_{\mu} \equiv \sum^{\prime} a_{\mu}b_{\mu} \equiv a_{t}b_{t} - a_{x}b_{x} - a_{y}b_{y} - a_{z}b_{z}$$

2次元ユークリッド空間における スカラーとベクトル

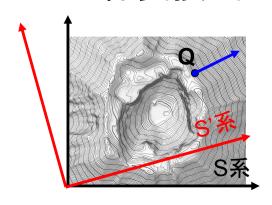
スカラー:座標系に依存しない(1成分)量



スカラー(場)の例:

- •標高(山頂Pの標高は、S系でみてもS'系 でみても同じ)
- ・距離(PQ間の距離は、S系でみてもS'系でみても同じ
- •質量(山頂Pにいる人の質量は、S系でみてもS'系でみても同じ)

ベクトル:座標変換と同じ変換規則に従う多成分量

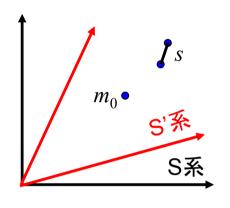


ベクトル(場)の例:

- •勾配(点Qにおける重力ポテンシャルの勾配のx成分、y成分は、座標と同じ変換規則に従う)
- •速度ベクトル(点Qにあるボールの速度ベクトルのx成分、y成分は、座標と同じ変換規則に従う)

ミンコフスキー空間における スカラーと4元ベクトル

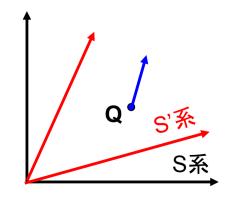
スカラー:座標系に依存しない(1成分)量



スカラーの例:

- ・時空距離(インタバル)
- •固有時
- ·静止質量(4元運動量の絶対値)
- ・波の位相(4元位置ベクトルと4元波数ベクトルのスカラープロダクト)

4元ベクトル:座標変換と同じ変換規則に従う4成分量



ベクトルの例:

- ・4元位置ベクトル
- ・4元速度ベクトル
- ・4元運動量(4元波数ベクトル)
- ·4元電流密度
- ・4元ポテンシャル(電磁ポテンシャル)

4元速度と4元運動量

物体の時空座標(4元ベクトル)

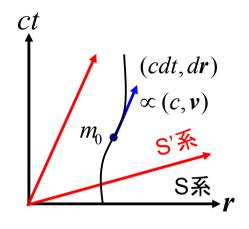
$$(ct, \mathbf{r}) = (ct, x, y, z)$$

物体の時空座標の変化(4元ベクトル)

$$(cdt, d\mathbf{r}) = (cdt, dx, dy, dz)$$

物体の4元速度ベクトル

$$\left(c\frac{dt}{d\tau},\frac{d\mathbf{r}}{d\tau}\right) = \frac{1}{\sqrt{1-v^2/c^2}}(c,v_x,v_y,v_z)$$

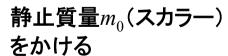


固有時(スカラー)で 割る

$$d\tau = dt\sqrt{1 - v^2/c^2}$$

物体の4元運動量ベクトル

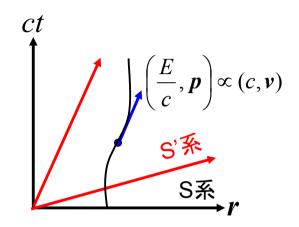
$$\frac{m_0}{\sqrt{1-v^2/c^2}}(c,v_x,v_y,v_z) = \left(\frac{E}{c},\boldsymbol{p}\right)$$



運動量とエネルギー(同じ実在の2つの側面)

4元運動量ベクトル

$$\left(\frac{E}{c}, \boldsymbol{p}\right) = (mc, m\boldsymbol{v}) \left(m = \frac{m_0}{\sqrt{1 - v^2/c^2}}\right)$$

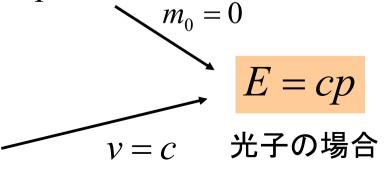


4元運動量ベクトルの大きさの自乗(スカラー)

$$\frac{E^2}{c^2} - p^2 = m_0^2 c^2 \iff E = \sqrt{m_0^2 c^4 + c^2 p^2}$$

運動量とエネルギーの比例関係

$$\left(\frac{E}{c}, \boldsymbol{p}\right) \propto (c, \boldsymbol{v}) \rightarrow \boldsymbol{p} = \frac{E}{c^2} \boldsymbol{v}$$



光子(電磁場)のエネルギーと運動量

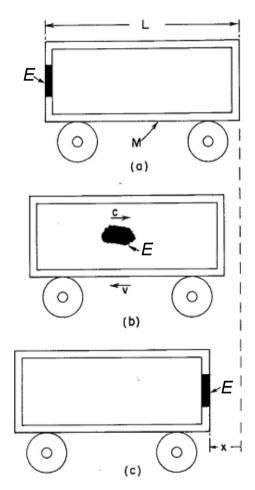


Fig. 27–7. The energy E in motion at the speed c carries the momentum E/c.

光子放出後の箱の質量変化=E/c2

光子放出後の箱の速度=p/M

光子の飛行時間=L/c

箱の移動距離 $=x=L/c \times p/M = Lp/cM$

箱の重心変化がないとすると、 $Mx=EL/c^2$

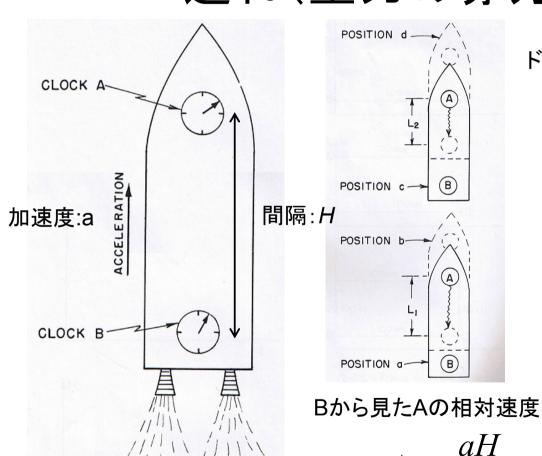
したがって、

$$p = \frac{E}{c} \to \mathbf{g} = \frac{\mathbf{S}}{c^2}$$

S:エネルギー流 (Poyntingベクトル)

 $oldsymbol{g}$:運動量密度

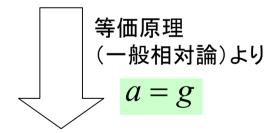
加速度系(重力場中)における時間の遅れ(重力の赤方偏移)



ドップラー効果(特殊相対論)より

$$\omega = \omega_0 \frac{1 + v/c}{\sqrt{1 - v^2/c^2}}$$

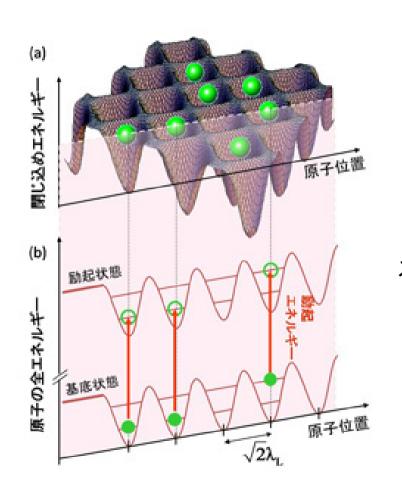
$$\cong \omega_0 (1 + v/c)$$

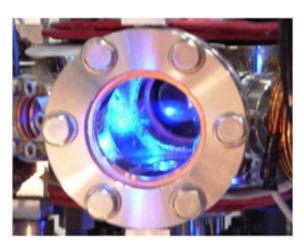


$$\omega = \omega_0 \left(1 + \frac{gH}{c^2} \right)$$

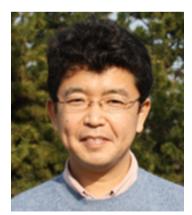
高い場所の時計は速く進む!

光格子時計(未来の1秒の定義?)





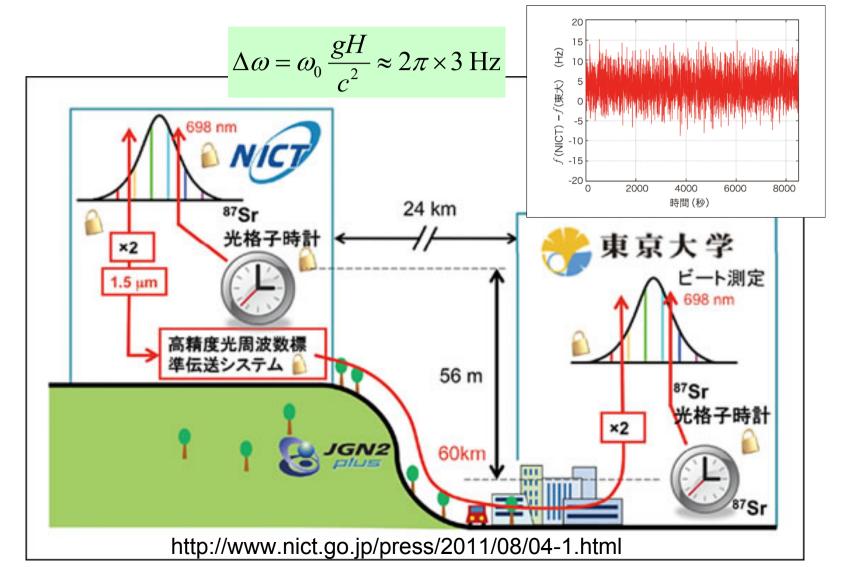
ストロンチウム原子の磁気光学トラップ



発明者の香取さん@東大物工

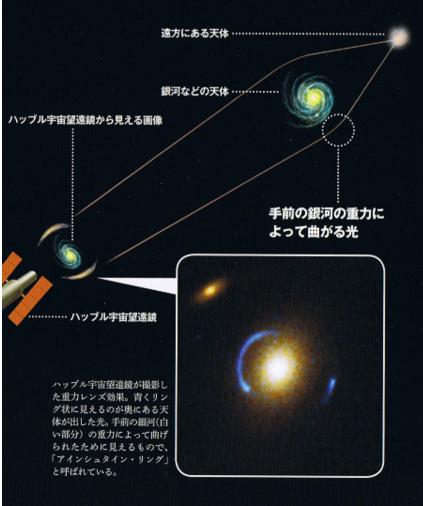
http://www.jsps.go.jp/j-grantsinaid/31_result/rikou/41_katori.html

本郷と小金井の時間の進みの違い



相対性理論の実証②――重力レンズ効果の観察

大気や天候の影響を受けずに高い精度での天体観測が可能なハップル宇宙望遠鏡が、 遠方にある天体からの光が、それよりも手前にある銀河の重力によって曲げられリング 状などに見える現象(重力レンズ効果)の観察に成功、「巨大な質量をもつ天体のそば では、その重力の影響により光が曲げられる」との子言は実証された。



100年で科学が理論に追いついてきた。

相対性理論の実証①――原子時計による比較実験

超高精度の原子時計が開発され、地上設置の時計と宇宙船や人工衡星搭載の時計との 比較実験によって、速度や重力の影響で時間の進み方が速くなったり、遅くなったりす ることが確認された。現在では、地上において高さが30cm違うだけで、両者に作用する 重力の違いによって、上方の原子時計の進み方が若干速いことが確認されている。

GPS衛星の時間

- ●衞星は秒速4kmというスピードで地球を周回 しているので、1日7.1マイクロ秒遅れる(動 くものは時間が遅れる)
- ●衛星の軌道は高度約2万km。重力が地上より 弱いので、1日45.7マイクロ秒進む(重力の 強いところは時間が遅れる)
- 両者を足すと、衛星の時計は1日あたり38.6 マイクロ秒だけ進んでしまうことになるので、GPS衛星の原子時計は、この誤差を補正して運用されている。

100分de名著 アインシュタイン『相対性理論』 2012年11月(NHK出版) より抜粋

Optical Clocks and Relativity

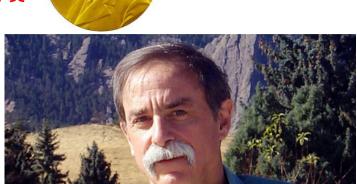
C. W. Chou,* D. B. Hume, T. Rosenband, D. J. Wineland

2012年ノーベル物理学賞

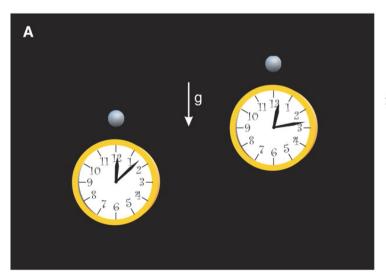
Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

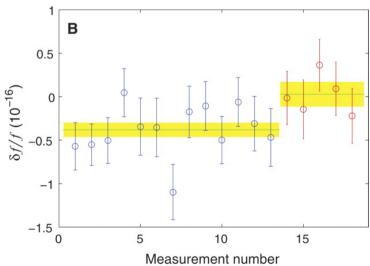
A libert Einstein's theory of relativity forced us to alter our concepts of reality. One of the more startling outcomes of the theory is that we have to give up our notions of simul-

taneity. This is manifest in the so-called twin paradox (I), in which a twin sibling who travels on a fast-moving rocket ship returns home younger than the other twin. This "time dilation" can be



24 SEPTEMBER 2010 VOL 329 SCIENCE www.sciencemag.org





10の17乗の不確かさ

0