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A simple, rigorous geometrical representation for the Schridinger equation is developed to describe
the behavior of an ensemble of two quantum-level, noninteracting systems which are under the influence
of a perturbation. In this case the Schridinger equation may be written, after a suitable transformation,
in the form of the real three-dimensional vector equation dr/di=wXr, where the components of the vector
r uniquely determine ¢ of a given system and the components of @ represent the perturbation. When
magnetic interaction with a spin } system is under consideration, “r" space reduces to physical space. By
analogy the techniques developed for analyzing the magnetic resonance precession model can be adapted
for use in any two-level problems. The quantum-mechanical behavior of the state of a system under various
different conditions is easily visualized by simply observing how r varies under the action of different types
of w. Such a picture can be used to advantage in analyzing various MASER-type devices such as amplifiers
and oscillators. In the two illustrative examples given (the beam-type MASER and radiation damping)
the application of the picture in determining the effect of the perturbing field on the molecules is shown
and its interpretation for use in the complex Maxwell’s equations to determine the reaction of the molecules

back on the field is given.
¥ ()= a(thatblts (1) dr/di=wXr (4)
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: = (Vart Vio) /i
rye=iab®— ba*) (2) wr=1{Var— Via)/ (5)
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