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Outline

 What is Dicke superradiance

— Connection (analogy) between laser and
superradiance

e How to make a Bose-Einstein condensate

« Applications of Dicke superradiance in a Bose-
Einstein condensate

— Matter-wave amplification
— Storage of light (towards quantum memory)



One-atom spontaneous emission

The electric dipole operator
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Three-atom spontaneous emission

The (total) electric dipole operator
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<< | The rate of spontaneous emission

R:G<S+S'>

Same form as the single-atom case, but S "(s7)
Is the sum of each raising (lowering) operator



Evolution of the three-atom system
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N-atom spontaneous emission

N-atom system < N spin-1/2 system with the total spin J = N/2
(assumption: Indiscernability of the atoms with respect to
photon emission)
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Enhancement by the number
of photons already emitted

R. H. Dicke, Phys. Rev. 93, 99 (1954)



Analogy with the laser principle

N photons in the cavity The interaction Hamiltonian
(after rotating-wave approx.)
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The emission rate of the atom
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Stimulated Spontaneous
emission emission

LASER: Light Amplification by Stimulated Emission of Radiation



Comparison between ordinary and
superradiant emission
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Fig. 1. Comparison between the general characteristics of ordinary fluorescence and superradiance experiments. (a) Ordinary spontaneous emission

is essentially isotropic with an exponentially decaying intensity (time constant 7). {b) Superradiance is anisotropic with an emission occurring in a short
burst of duration ~ 7,/ N.

From M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982)



What is Bose-Einstin condensation?

Macroscopic occupation of atoms in the
lowest quantum state of motion
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The criterion of BEC
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p Einstein in 1925

3 Phase space density (the number of atoms in
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BEC is formed when the wavepackets overlap with each other !



T 300K atoms behave as “billiard balls”

\"f' ] Laser cooling
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\ Evaporative cooling

Wavepackets begin to overlap

J Evaporative cooling

One giant matter wave
T 100nK Bose-Einstein condensation




Cooling and Trapping of Rb atoms
(Magneto-optical trag
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What Is evaporative cooling?

Nice applet at Colorado University Website

http://www.colorado.edu/physics/2000/applets/bec.html




Phase transition from a thermal
cloud to a Bose condensate
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The properties of BEC

Images of a BEC released from the magnetic trap

1mm

1. narrow velocity width
below the recoil velocity
6 mm/s for Rb87

2. Well localized in space
10y m 100y m

3. Spatial density of
1014 atoms/cms3

4. Coherent

1ms 55ms 11ms 16.5ms 22ms 27.5ms 33ms



Rayleigh scattering in a Rb BEC

Rb BEC

Off-resonart light

63 mW/cmz
detuning: -4.4 5Hz

Pulse duration:
25 n$-3200 ns

30 ms TOF

D. Schneble, Y.T., M. Boyd, E. W. Streed, D. E. Pritchard, and W. Ketterle, Science 300, 475 (2003)



Rayleigh scattering in a Rb BEC

End-fire mode

Rb2BEC

°© @

Off-resonant light

63 mW/cmz2
detuning: -4.4 GHz

Pulse duration:
End-fire mode 25 n$-3200 ns

30 ms TOF

D. Schneble, Y.T., M. Boyd, E. W. Streed, D. E. Pritchard, and W. Ketterle, Science 300, 475 (2003)



Fully-guantum picture
(Fermi’'s Golden Rule)

Scattering process: M
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Semi-classical interpretation of

superradiance
Spontaneous Recoiling atom Bragg scattering
BEC emission q N, =1 | Of pump light

Pump light

Two recoiling atoms Bragg scattering of
pump Ilght
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The rate of light scattering is enhanced N, I NO(Nq +1)

by the number of recoiling atoms Lasing of matter-wave



ldeal single-photon generator
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A device which produces light pulses containing
only one photon in a well-defined mode



Writing, storing, and reading of
a single photon

writing storing reading
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Motivation: DLCZ protocol

Detection of a forward-scattered photon
results in the excitation of the symmetric

collective mode defined by
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L.-M. Duan, M. D. Lukin, J. I. Cirac,and P. Zoller, Nature. 414, 413 (2001)



Superradiant Raman scattering in a
Bose condensate
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Y. Yoshikawa, T. Sugiura, Y. T., and T. Kuga, PRA 69 041603 (2004)



How long does the grating survive?

End-fire light - End-fire light
L 555 — > R
Short delay
Pump beam Pump beam
— e
Long delay
Pump beam Pump beam

Storage (coherent) time of the grating is limited by the size of the wavepacket



Storage (coherence) time

Light intensity [a.u.]
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Y. Yoshikawa, Y. T. and T. Kuga, PRL 94 083602 (2005)



Storage time vs. temperature
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Multiple storage and retrieval of
light pulses in a BEC
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Selective retrieval of phonons
(Phase-matching condition)

Phase-matched read beam Phase-mismatched read beam
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The read beam is diffracted  The read beam just passes
(successful retrieval) through




Signal intensity [a.u.]

Multiple storage and retrieval of light
pulses in a BEC
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Two-photon interferance
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Measurement of Subpicosecond Time Intervals between Two Photons by Interference
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A fourth-order interference technique has been used to measure the time intervals between two pho-
tons, and by implication the length of the photon wave packet, produced in the process of parametric
down-conversion. The width of the time-interval distribution, which is largely determined by an interfer-
ence filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 s
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FIG. 1. Outline of the experimental setup.
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FIG. 2. The measured number of coincidences as a function
of beam-splitter displacement ¢ &, superimposed on the solid
theoretical curve derived from Eg. (11) with R/T=0.95,
Aw=3x10" rad s~'. For the dashed curve the factor
2RT/(R*+T?) in Eq. (11) was multiplied by 0.9. The verti-
cal error bars correspond to one standard deviation, whereas
horizontal error bars are based on estimates of the measure-
ment accuracy.



Two-atom Interference
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Conclusion

* The concept of Dicke superradiance is
applicable not only to spontaneous
emission but also light scattreing (Rayleigh
or Raman)

o Superradiand Rayleigh/Raman scattering
offers us new and interesting phenomena
and application such as matter-wave
amplification and single-photon storage



