Storage of a single photon in a Bose-Einstein condensate

December 13, 2006

Yoshio Torii, Yutaka Yoshikawa ,and Takahiro Kuga

Institute of Physics, University of Tokyo, Komaba

Motivation: DLCZ protocol

Detection of a forward-scattered photon results in the excitation of the symmetric collective mode defined by

$$S^{+} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |s|_{i=1} < g|$$

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature. 414, 413 (2001)

Writing, storing, and reading of a single photon

Efficient retrieval of a single excitation stored in an atomic ensemble

Julien Laurat, Hugues de Riedmatten, Daniel Felinto, Chin-Wen Chou, Erik W. Schomburg, and H. Jeff Kimble

Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA

Abstract: We report significant improvements in the retrieval efficiency of a single excitation stored in an atomic ensemble and in the subsequent generation of strongly correlated pairs of photons. A 50% probability of transforming the stored excitation into one photon in a well-defined spatio-temporal mode at the output of the ensemble is demonstrated. These improvements are illustrated by the generation of high-quality heralded single photons with a suppression of the two-photon component below 1% of the value for a coherent state. A broad characterization of our system is performed for different parameters in order to provide input for the future design of realistic quantum networks.

The origin of a grating (Indiscernability of the atoms)

Collective mode = Dicke state

N-atom system \Leftrightarrow N spin-1/2 system with the total spin J = N/2 (assumption: *Indiscernability* of the atoms with respect to photon emission)

R. H. Dicke, Phys. Rev. 93, 99 (1954)
M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982)

Spontaneous emission rate of the N-atom system: $\Gamma_N = \Gamma \langle J, M \mid J_+ J_- \mid J, M \rangle$ $= \Gamma (J + M) (J - M + 1)$ $= \Gamma N_e (N_g + 1)$ Bosonic stimulation (Superradiant emission)

Raman scattering rate for a cigarshaped atomic ensemble

Spontaneous scattering vs. Collective scattering

The ratio between spontaneous and collective Raman scattering rates:

$$rac{R_{_N}}{R}$$
 = $N\eta$: cooperativity parameter

 $\eta \equiv f(\theta) \Omega$:single-atom optical depth

$$\Omega \approx \left(\frac{\lambda}{w}\right)^2 f(\theta) = \begin{cases} \frac{3\sin^2\theta}{8\pi} & (\pi - \text{pol.}) \\ \frac{3(1 + \cos^2\theta)}{16\pi} & (\sigma - \text{pol.}) \end{cases}$$

The probability that an atom in the collective mode emits a photon into the solid angle Ω

$$P_{s} = \frac{N\eta}{1 + N\eta}$$

Cooperativity parameter of Bose condensates

Typical size of a Bose condensate: $d = 10 \ \mu m$

Typical number of atoms in a Bose condensate: $N = 10^6$

Cooperativity parameter for a typical Bose condensate:

 $N\eta \approx N\Omega \approx 10^3$

Probability of successful retrieval of a single photon:

$$P_{s} = \frac{N\eta}{1 + N\eta} \approx 99.9\%$$

BEC is ideal for storage of a single photon!

cf.) Cooperativity parameter and Purcell factor for cavities

The rate for an excited atom in the cavity to emit a photon into the cavity mode

$$R = \frac{2\pi}{\hbar^2} |\langle g, 1 | \hbar g_0 (a\sigma^+ + a^+\sigma) | e, 0 \rangle|^2 \delta(\omega - \omega_A)$$

$$= 2\pi g_0^2 \frac{k/\pi}{\kappa^2 + \delta^2} \xrightarrow{\delta=0} \frac{2g_0^2}{\kappa} \qquad \frac{k/\pi}{\kappa^2 + \delta^2} \text{ Normalized}$$

$$\left(g_0 \equiv \sqrt{\frac{d_{eg}^2 \omega}{2\varepsilon_0 \hbar V}}, \quad d_{eg} \equiv \langle e | -e\hat{x} | g \rangle, \quad 2\kappa = \frac{1}{\tau_c} = \frac{\pi c}{lF}, \quad V = \frac{\pi}{4} \omega_0^2 \cdot l\right)$$

The ratio between R and spontaneous emission rate Γ (Puecell factor)

$$\frac{R}{\Gamma} = \frac{2g_0^2}{\kappa\Gamma} = 2C = \frac{3\lambda^3}{4\pi^2} \left(\frac{Q}{V}\right) \qquad \left(Q \equiv \frac{\omega}{\Delta\omega} = \frac{2l}{\lambda}F\right)$$

Cooperativity parameter:
$$C \equiv \frac{g_0^2}{\kappa\Gamma} = \frac{12F}{\pi w_0^2 k^2} = \frac{F}{2\pi} \frac{\sigma_{\text{atom}}}{A} \left(\sigma_{\text{atom}} = 6\pi \lambda^2, A = \frac{\pi}{4} w_0^2 \right)$$

Relation between cooperativity parameter and superradiance

Superradiant Raman scattering in a Bose condensate

Y. Yoshikawa, T. Sugiura, Y. T., and T. Kuga, PRA 69 041603 (2004)

Measurement of the cooperativity parameter(CP) of a Bose condensate

Superradiance in a Thermal gas

Y. Yoshikawa, Y. T. and T. Kuga, PRL 94 083602 (2005)

What determines the coherence time?

Coherence time is given by the inverse of the Doppler width

Storage (coherence) time measurement

Storage time vs. temperature

Merits of using a BEC for single photon storage

- Large cooperativity parameter (~10³) (nearly 100% conversion efficiency)
- Long storage (coherence) time (~300µs) (could be extended by Lamb-Dicke effect)
- Arbitrary angle between the pump and the signal light (possibility of simultaneous storage of many photons)