Superradiant light scattering from condensed and non-condensed atoms

Aug 23, 2006

Yoshio Torii, Yutaka Yoshikawa ,and Takahiro Kuga

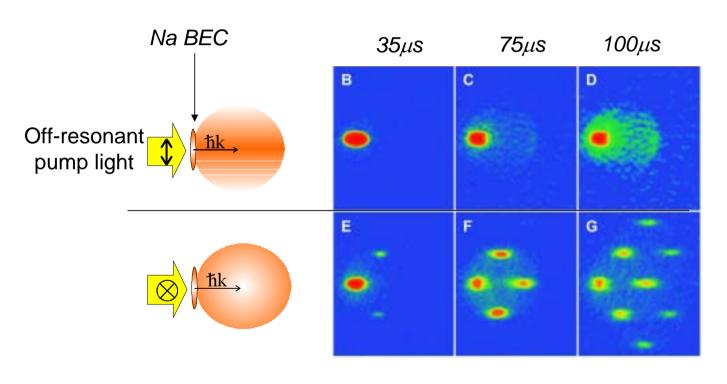
Institute of Physics, University of Tokyo, Komaba

Outline

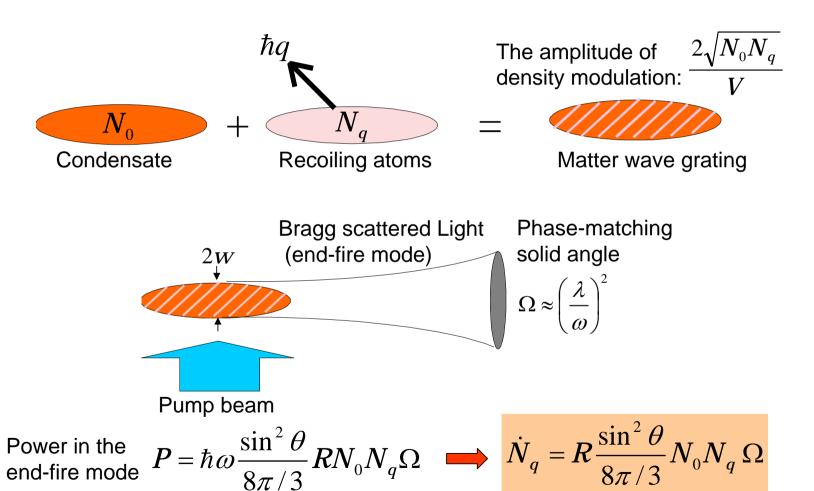
- Review of superradiance in a BEC (MIT99)
- Superradiance in the short and strong pulse regime (MIT03)
- Raman superradiance (Tokyo04, MIT04)
- Superradiance in a thermal atom cloud (Tokyo05)

Superradiant Rayleigh scattering from a Bose-Einstein condensate

S. Inouye, et. al., Science **285**, 571 (1999)



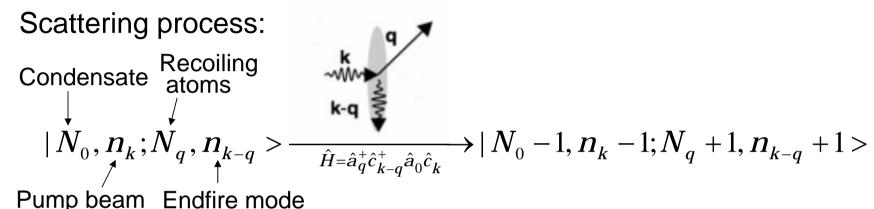
Semi-classical explanation



R: single-atom Rayleigh scattering rate

end-fire mode

Fully-quantum picture (Fermi's Golden Rule)

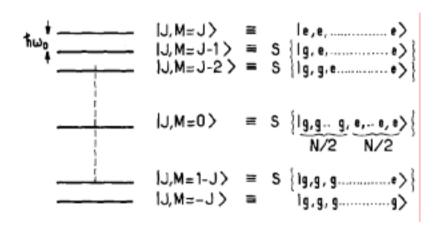


Scattering rate:

$$\begin{split} W & \propto |< N_0 - 1, n_k - 1; N_q + 1, n_{q-k} + 1 | \hat{H} | N_0, n_k; N_q, n_{k-q} > |^2 \\ & = N_0 n_0 \left(N_q + 1 \right) \left(n_{k-q} + 1 \right) \underbrace{\qquad \qquad }_{\text{neglect}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Stimulated scattering}} \underbrace{\qquad \qquad }_{\text{Spontaneous scattering}} \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Summing over } \Omega} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Spontaneous scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{8\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}{2\pi/3} N_0 \left(N_q + 1 \right) \Omega \\ & \underbrace{\qquad \qquad \qquad }_{\text{Scattering}} \hat{N}_q = R \frac{\sin^2 \theta}$$

Dicke's picture

N-atom system N spin-1/2 system with the total spin J = N/2 (assumption: *Indiscernability* of the atoms with respect to photon emission)



R. H. Dicke, Phys. Rev. **93**, 99 (1954)M. Gross and S. Haroche, Phys. Rep. **93**, 301 (1982)

Spontaneous emission rate

$$W_{N} = \Gamma \langle J, M | J_{+}J_{-} | J, M \rangle$$

$$= \Gamma (J + M)(J - M + 1)$$

$$= \Gamma N_{e}(N_{g} + 1)$$

$$\Gamma \rightarrow R \frac{\sin^{2} \theta}{8\pi/3} \Omega$$

$$N_{g} = N_{0}$$

$$N_{e} = N_{q}$$

$$\dot{N}_j = R \frac{\sin^2 \theta}{8\pi/3} N_0 (N_q + 1) \Omega$$

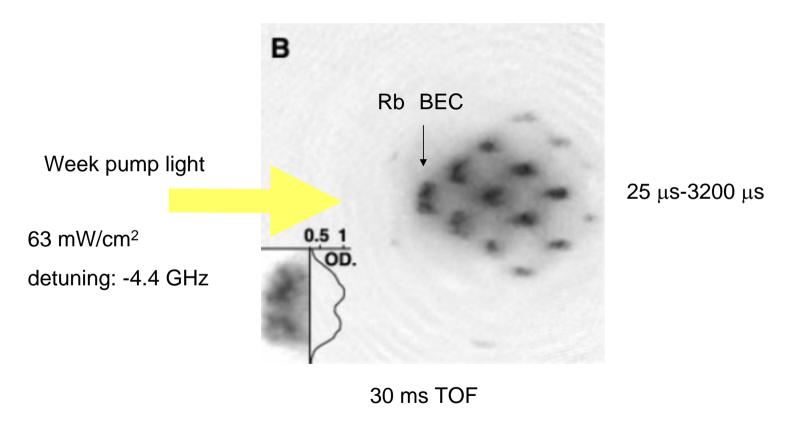
Three different pictures for superradinace in a BEC

 Semi-classical picture (Bragg diffraction of a pump beam off a matter wave grating)

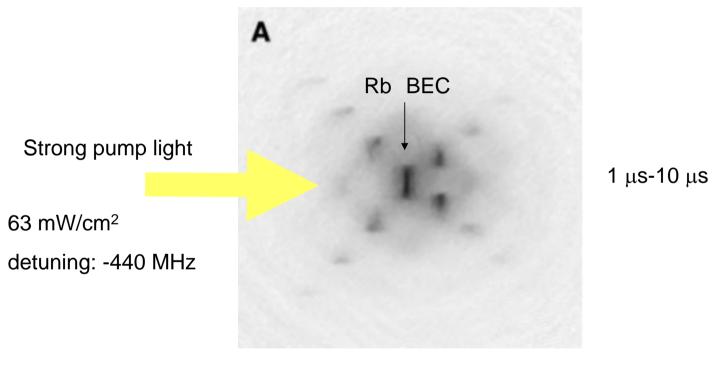
 Full-quantum picture (Bosonic enhancement by the recoiling atoms)

 Dicke's picture (enhanced radiation from a symmetric cooparative state)

Superradiant Rayleigh scattering in a Rb BEC

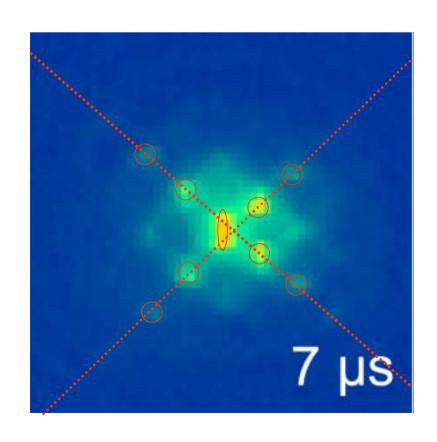


Superradiant Rayleigh scattering in the short (strong) pulse regime

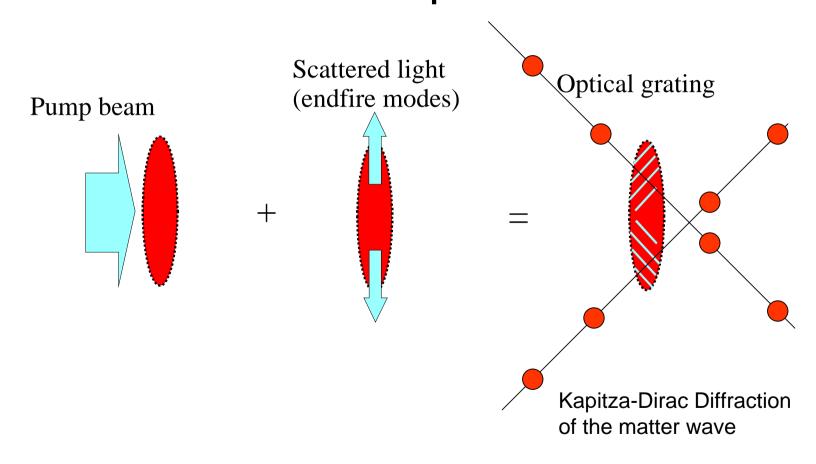


30 ms TOF

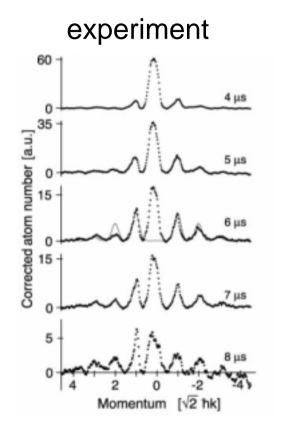
Asymmetry of the X-shaped pattern

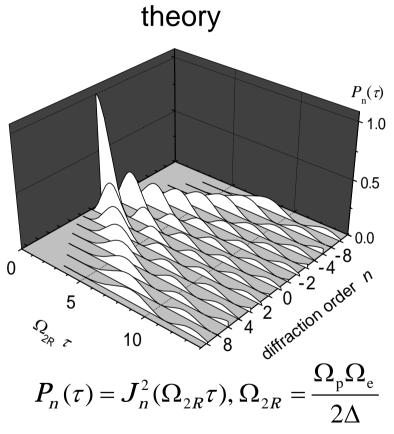


Explanation for the asymmetric X-shape



Intensity of the endfire mode

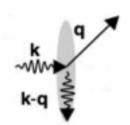




Intensity of the Endfire mode
$$I_{\rm e}=2\frac{\Omega_{\rm e}^2}{\Gamma^2}I_s=0.8~{\rm mW/cm^2}\left(I_s=1.6~{\rm mW/cm^2}\right)$$

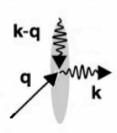
Scattering rate when the endfire photon $n_{k-a} >> 1$

Scattering process:



Reverse scattering process:

$$|N_0, n_k; N_p, n_{k-q}> \rightarrow |N_0+1, n_k+1; N_p-1, n_{k-q}-1>$$



Net scattering rate:

$$W \propto N_0 n_k (N_q + 1)(n_{k-q} + 1) - N_q n_{k-q} (N_0 + 1)(n_k + 1)$$

$$= N_0 n_k (N_q + n_{k-q} + 1)$$

Bosonic stimulation by the sum (not the product) of N_q and n_{k-q}

Bosonic stimulation by the recoiling atoms N_q or the endfire photon n_{k-q} ?

$$W \propto N_0 n_0 \left(N_q + n_{k-q} + 1\right)$$

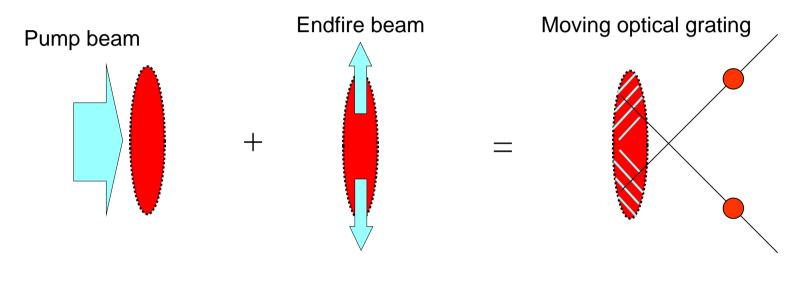
$$n_{k-q} <<1$$

$$N_q <<1$$

$$W \propto N_0 n_0 \left(N_q + 1\right) n_{k-q} = N_0 W \propto N_0 n_0 \left(n_{k-q} + 1\right)$$
 Stimulation by N_q (atom) Stimulation by n_{k-q} (photon)

Both pictures would give the same scattering rate!

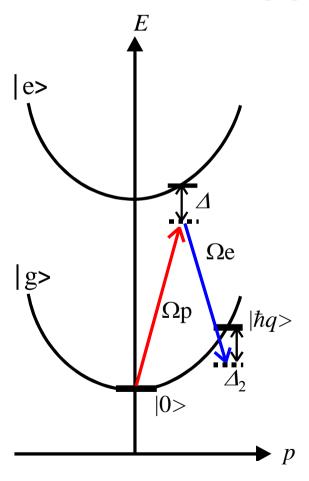
New interpretation of superradiance (in the long pulse regime)



Bragg diffraction of the matter wave

Superradiant Rayleigh scattering regarded as (self-stimulated) Bragg diffraction of a matter wave off a moving optical grating

Semi-classical derivation of the Bragg scattering rate



Fermi's Golden Rule

$$W = \frac{2\pi}{\hbar^2} |\hbar\Omega_{2R}/2|^2 \, \delta(\Delta_2)$$

$$\uparrow$$
Normalized
$$Lorentzian \frac{(\Gamma_2/2)/\pi}{\Delta_2^2 + (\Gamma_2/2)^2}$$

$$\Gamma_2 \equiv 1/\tau_c \quad \mbox{Width of the two-photon} \label{eq:gamma_constraints}$$
 (Bragg) resonance

Coherence time of the condensate

At two-photon resonance (Δ_2 =0)

$$W = N_0 \Omega_{2R}^2 / \Gamma_2 = N_0 \frac{\Omega_p^2 \Omega_e^2}{4\Delta^2} / \Gamma_2$$

How to express the rate W in terms of R and $n_{k-\alpha}$?

$$W = N_0 \frac{\Omega_p^2 \Omega_e^2}{4\Delta^2} / \Gamma_2$$

Single-atom Rayleigh scattering rate:

$$R = \Gamma \rho_{ee} \cong \Gamma \cdot \frac{1}{2} s_0 \frac{1}{(2\Delta/\Gamma)^2} = \Gamma \frac{\Omega_p^2}{4\Delta^2} \qquad \left(s_0 \equiv \frac{2\Omega_p^2}{\Gamma^2} \right)$$

$$\left(\boldsymbol{S}_0 \equiv \frac{2\Omega_{\rm p}^2}{\Gamma^2}\right)$$

Intensity of the endfire mode:

Saturation parameter of the pump beam

$$I_{\rm e} = I_{\rm s} \, rac{2\Omega_{\rm e}^2}{\Gamma^2} \quad \left(I_{\rm s} \equiv rac{\pi\hbar\omega\Gamma}{3\lambda^2}
ight) \quad {
m Saturation intensity} \ {
m (I_s = 1.6 \ mW/cm^2 \ for \ Rb \ D_2 \ line)}$$

Number of photons emitted in the coherence time $\tau_c = 1/\Gamma_2$:

$$n_{q-k} = \frac{I_{e} A \tau_{c}}{\hbar \omega} = \frac{2\pi A}{3\lambda^{2}} \frac{\Omega_{e}^{2}}{\Gamma \Gamma_{2}}$$

...continued

$$\Omega_{\rm p}^2 = R \frac{4\Delta^2}{\Gamma} \qquad \Omega_{\rm e}^2 = n_{k-q} \frac{3\lambda^2}{2\pi A} \Gamma \Gamma_2$$

$$W = N_0 \frac{\Omega_{\rm p}^2 \Omega_{\rm e}^2}{4\Delta^2} / \Gamma_2 = R \frac{3\lambda^2}{2\pi A} N_0 n_{k-q}$$

$$\Omega \approx \left(\frac{\lambda}{W}\right)^2 \approx \frac{\lambda^2}{A}$$
Semi-classical e

Semi-classical expression based on the matter wave grating

$$W = R \frac{3}{2\pi} N_0 n_{k-q} \Omega$$

$$W = R \frac{3}{2\pi} N_0 n_{k-q} \Omega \qquad \approx \qquad \dot{N}_j = R \frac{\sin^2 \theta}{8\pi/3} N_0 N_q \Omega$$

Four different pictures for superradinace in a BEC

- Semi-classical picture (Bragg diffraction of a pump beam off a matter wave grating)
- Full-quantum picture (Bosonically enhanced scattering by the recoiling atoms)
- Dicke's picture (enhanced radiation from a symmetric cooparative state)
- self-stimulating Bragg diffraction of the matter wave off the optical grating

Analysis including propagation effects

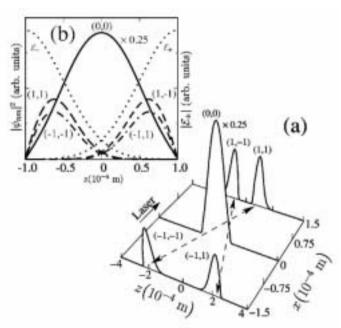


FIG. 1. Strong-pulse regime. (a) Spatial distribution of the firstorder forward $(1, \pm 1)$ and backward $(-1, \pm 1)$ atomic side modes, after applying a laser pulse of duration t_f =14 μ s and strength g=2×10⁶ s⁻¹ to the condensate followed by a free propagation for a time t_p =25 ms. (b) Spatial distributions of the atomic side modes and the optical endfire modes (\mathcal{E}_k) , at time t_f . For the sake of illustration the BEC population (0, 0) has been divided by 4.

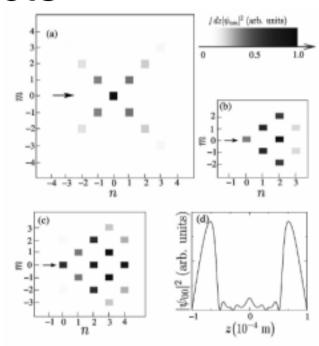
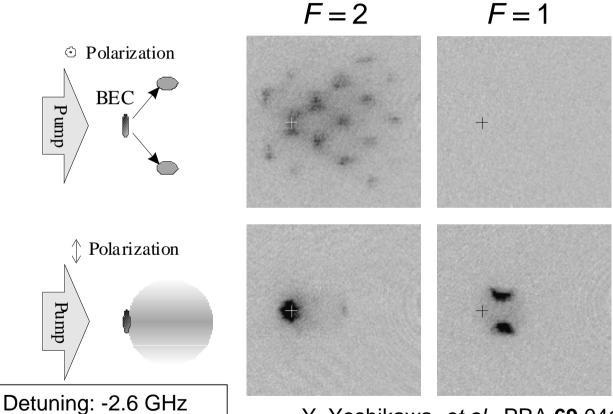


FIG. 2. Atomic side-mode distributions. Each square represents an integrated probability $p_{sm} = \int dz |\phi_{sm}(z,t)|^2$. (a) Strong-pulse regime: $t_f = 10.6~\mu s$ and $g = 2.6 \times 10^6~s^{-1}$. (b) Weak-pulse regime: $t_f = 232~\mu s$ and $g = 5.0 \times 10^5~s^{-1}$. (c) Weak-pulse regime: $t_f = 291~\mu s$ and $g = 6.5 \times 10^5~s^{-1}$. (d) Spatial distribution of the condensate along the axis z corresponding to (c).

O. Zobay and Georgios M. Nikolopoulos, PRA 72, 041604R (2005)

Changing the polarization of the pump beam



Intensity: 40 mW/cm²

Pulse duration: 100 μs

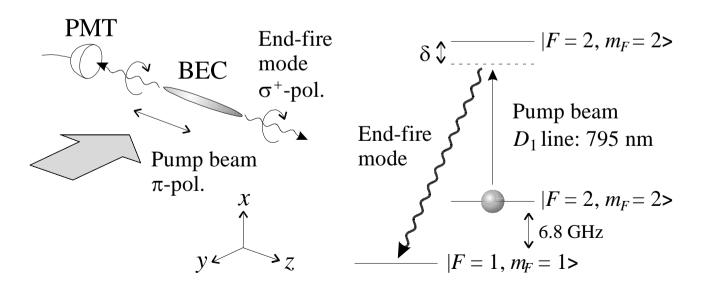
- Y. Yoshikawa, et al., PRA 69 041603 (2004)
- D. Schneble, et at., PRA 69 041601 (2004)

Raman superradiance

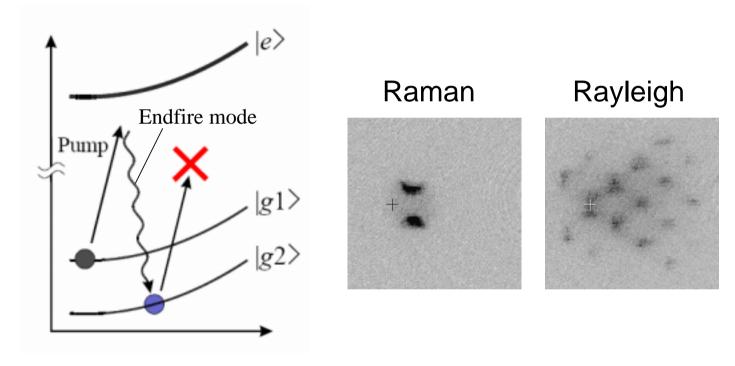
The only condition for Raman superradiance:

Raman scattering gain > Rayleigh scattering gain

$$R_{\text{Raman}} \frac{3}{16\pi(1+\cos^2\theta)} > R_{\text{Rayleigh}} \frac{\sin^2\theta}{8\pi/3}$$

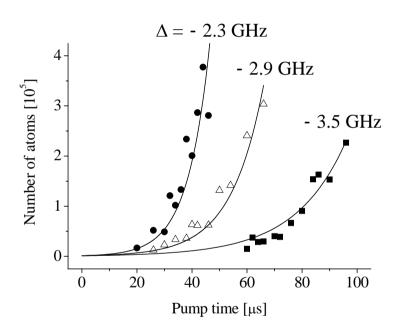


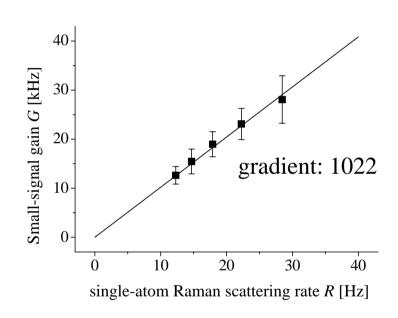
Merits of Raman superradiance over Rayleight superradiance



- No backward scattering (K-D scattering)
- No interaction with the pump bean once scattered

Exponential growth of the Raman scattered atoms





$$\dot{N}_q \approx \frac{3}{8\pi} R N_0 N_q \Omega \xrightarrow{N_0 << N_q} N_q \approx e^{Gt}$$

 $G = \frac{3}{8\pi} RN_0 \Omega = 890R$

Small-signal gain:

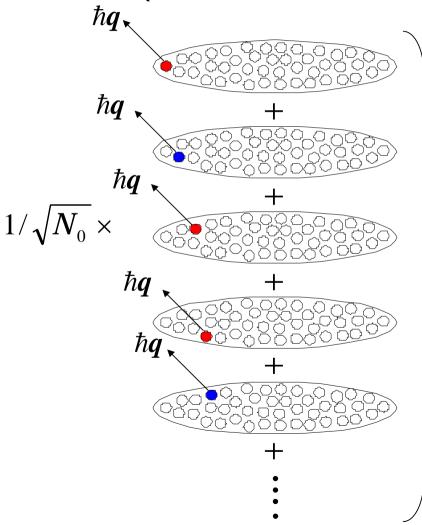
R: single-atom Raman scattering rate

Y. Yoshikawa, et al., PRA **69** 041603 (2004)

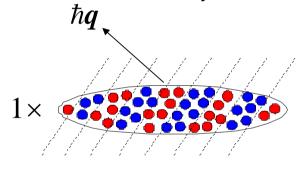
Where is a grating?



The origin of a grating (Collective mode excitation)



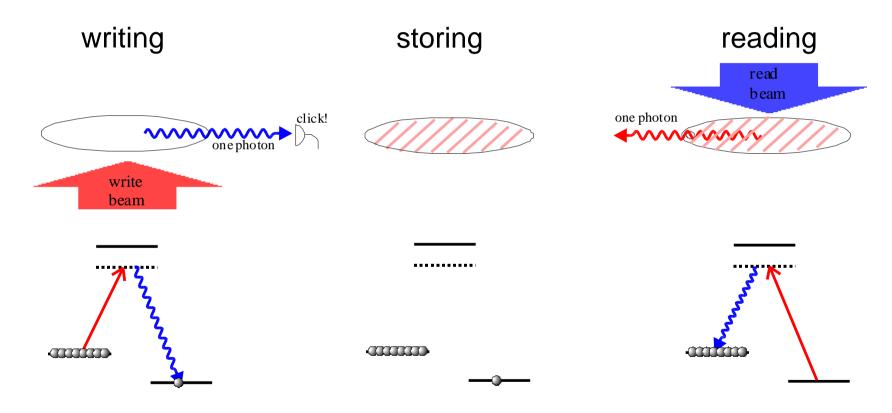
One atom is excited to the collective atomic mode defined by S⁺



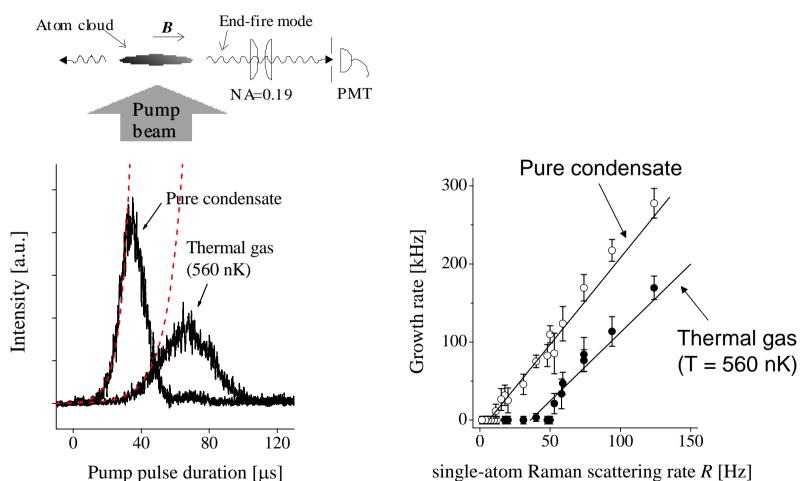
$$|J,M=-J+1>=S^+|J,M=-J>$$

$$\left(S^{+} \equiv \frac{1}{\sqrt{N_{0}}} \sum_{i=1}^{N_{0}} | \hbar q >_{i} < 0 | \right)$$

Writing, storing, and reading of a single photon



Superradiance in a Thermal gas



Y. Yoshikawa, Y. T. and T. Kuga, PRL **94** 083602 (2005)

The origin of the threshold

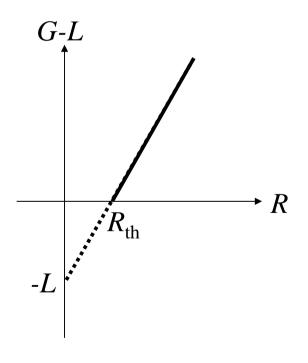
Loss term
$$\dot{N}_q = (G - \dot{L}) N_q \rightarrow N_q \propto e^{(G - L)t}$$

 $L>G\;$: No exponential growth

G>L : exponential growth with a growth rate of G-L

$$L = 1/\tau_c$$

coherent time of the system



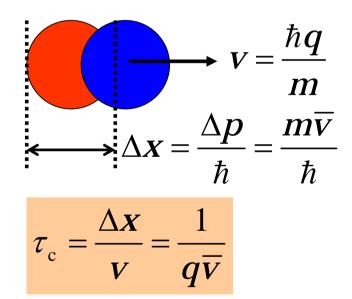
What determines the coherence time?

a) The endfire mode

Doppler width:
$$\Delta \omega_{\rm D} = q \overline{v} \qquad \left(\overline{v} = \sqrt{\frac{k_{\rm B} T}{m}} \right)$$
 RMS velocity

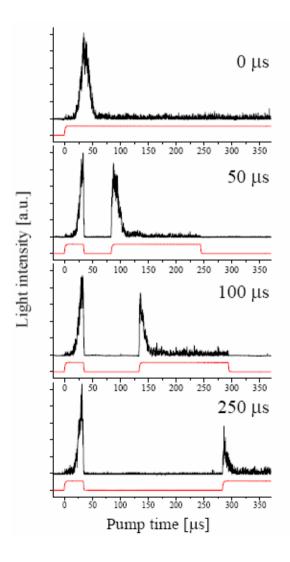
$$\tau_{\rm c} = \frac{1}{\Delta \omega_{\rm D}} = \frac{1}{q\overline{v}}$$

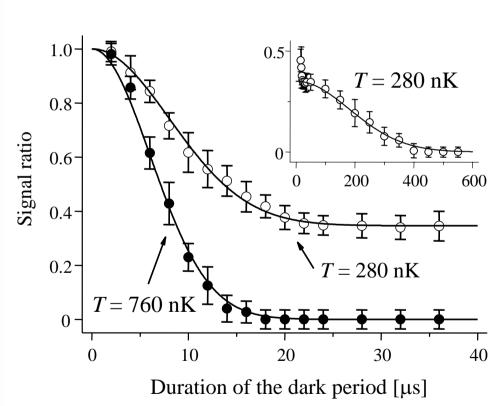
b) matter wave grating (overlap of the wave packets)



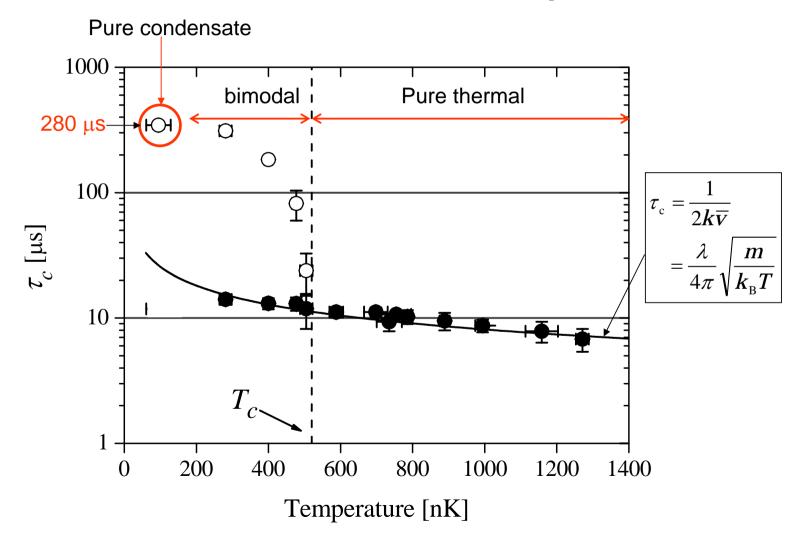
Coherence time is given by the inverse of the Doppler width

Measurement of the coherence time





Coherence time vs. temperature



Conclusion

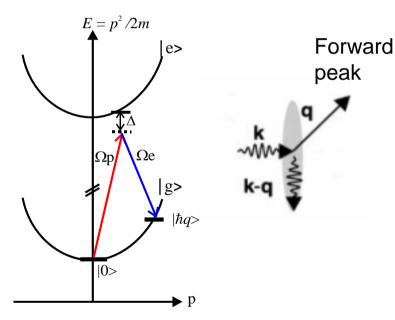
 The behavior of superradiance in the short and strong pulse regime has led to a new picture of superradiance (optical stimulation)

 The study of superradiance in a thermal gas showed that a thermal gas will act as a pure condensate within a time scale shorter than the coherence time, which is determined by the Doppler effect.

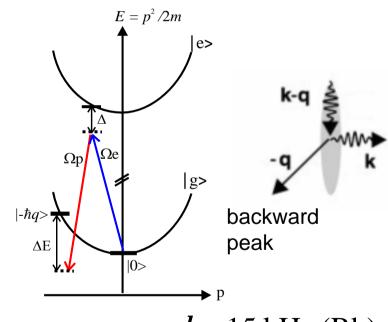
spacer

Photon picture of K-D diffraction

scattering a pump photon into the endfire mode

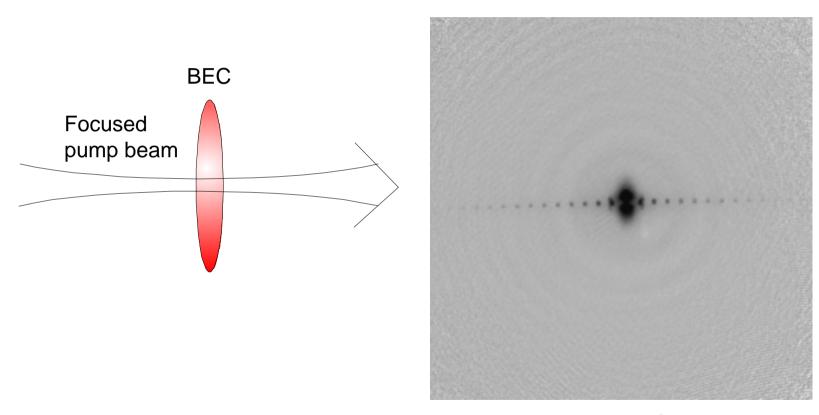


(stimulated) scattering of a pump photon into the pump beam



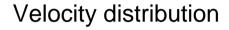
$$\Delta E = 2\hbar\omega_{\text{rec}} = \frac{h \times 15 \text{ kHz (Rb)}}{h \times 100 \text{ kHz (Na)}}$$

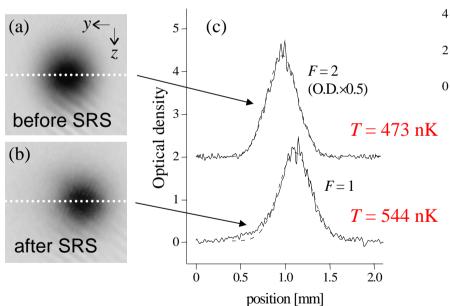
K-D diffraction with a focused pump beam



10 ms TOF

Velocity and spatial distribution before and after the SRS





spatial distribution

