分子科学研究会「分子科学のフロンティア領域へ」 2006年6月2日

コヒーレント原子波の不思議

東京大学大学院総合文化研究科

ボース・アインシュタイン凝縮の仲間達

今日のお話

- どうやってBECをつくるのか?
 レーザー冷却と蒸発冷却
- ・量子光学(原子レーザー)としてのBEC
 原子波干渉計、超放射(物質波増幅)
- ・凝縮系物理学としてのBEC Mott転移、分子のBEC(Feshbach共鳴)

Tokyo(1998)

原子は励起状態になり、反跳運動量 $p = \hbar k$ を受ける

原子による光子の自然放出

励起状態にある原子は、寿命の後に光子を自由な方向に自然放出し、反跳運動量 $p = \hbar k$ を受ける

吸収と自然放出を繰り返すと

共鳴光の進行方向へ力を受ける(輻射圧)

ゼーマン減速器による熱的Rb原子線の減速

磁気光学トラップ (Magneto-optical Trap: MOT)

MOT of Rb atoms in a glass cell

なゼレーザー冷却が働くのか?

Example 1:ドップラー冷却

Example 2: キャビティー冷却

 \mathcal{O}_I

 $\hbar\omega_L < \hbar\omega_C$

H. W. Chan, et. al., PRL 90, 063003, 2003

原子の閉じ込め:磁気トラップ

特定のスピン状態の原子は、磁場の極小点にトラップされる

極小点を持つ磁場を作るには? クローバーリーフコイル

蒸発冷却の原理

http://www.colorado.edu/physics/2000/applets/bec.html

吸収イメージング法

磁気トラップされた原子の蒸発冷却

言葉の定義

・コヒーレント原子波 ・ボース凝縮体(BEC) ・原子レーザー

色々な原子レーザー(output coupler)

MIT '97

Yale '98

gravity

NIST '99

Munich '99

原子気体BEC(原子レーザー)の特徴

- ・すべての方向の運動量幅が1光子反跳 運動量以下
- ・原子集団が空間的に局在
 (10µm~100µm)
- ·空間密度が高い(~10¹⁴ atoms/cm³)

・単一の量子状態にすべての原子が存在 非対角長距離秩序が存在 $\left\langle \hat{\Psi}^{+}(\boldsymbol{r})\hat{\Psi}(\boldsymbol{r}') \right\rangle = \Psi^{*}(\boldsymbol{r})\Psi(\boldsymbol{r}')$

> Ψ(**r**):凝縮体の波動関数 (秩序パラメータ)

磁気トラップから開放されたBECの時間発展

非対角長距離秩序の確認

I. Bloch, T. W. Hänsch, and T. Esslinger: Nature 403, 166 (2000).

独立なBEC間の干渉

Interference of two condensates

Andrews, Townsend, Miesner, Durfee, Kurn, Ketterle, Science 275, 589 (1997)

光定在波によるBECのBragg散乱

[M. Kozuma et. al. Phys. Rev. Lett. 82, 871 (1999)]

Bragg回折された BECの吸収画像 (20 ms TOF)

Y. T, et. al., PRA 61, R041602 (2000)

光波および原子波の Mach-Zehnder干渉計

BECのMach-Zehnder干渉計

Y. T, et. al., PRA 61, R041602 (2000)

ボース凝縮体の超放射

S. Inouye, et. al., Science 285, 571 (1999)

Superradiant Rayleigh scattering in a Rb BEC

D. Schneble, Y.T., M. Boyd, E. W. Streed, D. E. Pritchard, and W. Ketterle, Science 300, 475 (2003)

超放射散乱の起源

光子が散乱される確率は、それまでに散乱された原子数に比例する

Laser

Light Amplification by Stimulated Emission of Radiation

N photons already in the cavity

Emission rate from an excited atoms $R = \Gamma(N+1)$ Stimulated Spontaneous emission emission

物質波増幅

M. Kozuma, et. al., Science 286, 2309 (1999)

Pump pulse only

Nothing happened

Bragg pulse only

6.5% of atoms were Bragg diffracted

Bragg pulse, then pump pulse

66% of atoms were coupled out (10 fold amplification)

BECのMott 転移

M. Greiner, et. al., Nature 415, 39 (2002)

Mott 転移の確認

Mott転移(光格子)の一つの応用 量子コンピューター

分子のBEC

BECから分子を生成する手法

Feshback共鳴

光会合による分子の生成

Science 287, 1016 (2000)

Molecules in a Bose-Einstein Condensate

Roahn Wynar, R. S. Freeland, D. J. Han, C. Ryu, D. J. Heinzen*

State-selected rubidium-87 molecules were created at rest in a dilute Bose-Einstein condensate of rubidium-87 atoms with coherent free-bound stimulated Raman transitions. The transition rate exhibited a resonance line shape with an extremely narrow width as small as 1.5 kilohertz. The precise shape and position of the resonance are sensitive to the mean-field interactions between the molecules and the atomic condensate. As a result, we were able to measure the molecule-condensate interactions. This method allows molecular binding energies to be determined with unprecedented accuracy and is of interest as a mechanism for the generation of a molecular Bose-Einstein condensate.

Fig. 1. Stimulated Raman coupling between free and bound states of atoms in a Bose-Einstein condensate.

Fig. 2. Stimulated Raman free-bound transition line shapes in a Bose-Einstein condensate for four different peak condensate densities: (A) $n_{0}^{}=0.77\times10^{14}\,cm^{-3};$ (B) $n_{0}^{}=1.22\times10^{14}$ cm^-2; (C) $n_{0}^{}=1.75\times10^{14}\,cm^{-3};$ and (D) $n_{0}^{}=$ 2.60 × 1014 cm⁻³. Each spectrum shows the fraction of atoms remaining in the condensate after illumination by the two coherent laser fields, as a function of the laser frequency difference. The resonant decrease in atom number arises from the formation of molecules by stimulated Raman free-bound transitions. followed by their subsequent loss from the trap. The increase in width and center frequency of the resonance with density arise from the atom-condensate and molecule-condensate mean-field interactions.

Fig. 1. Feshbach resonance at ~850 G in a mixture of the two lowest spin states of ⁶Li (18). The s-wave scattering length a is plotted as a function of the magnetic field B.

Emergence of a molecular Bose–Einstein condensate from a Fermi gas

Markus Greiner¹, Cindy A. Regal¹ & Deborah S. Jin²

NATURE | VOL 426 | 4 DECEMBER 2003 |

Bose-Einstein Condensation of Molecules

S. Jochim,¹ M. Bartenstein,¹ A. Altmeyer,¹ G. Hendl,¹ S. Riedl,¹ C. Chin,¹ J. Hecker Denschlag,¹ R. Grimm^{1,2*}

We report on the Bose-Einstein condensation of more than 10⁵ Li₂ molecules in an optical trap starting from a spin mixture of fermionic lithium atoms. During forced evaporative cooling, the molecules are formed by three-body recombination near a Feshbach resonance and finally condense in a long-lived thermal equilibrium state. We measured the characteristic frequency of a collective excitation mode and demonstrated the magnetic field–dependent mean field by controlled condensate spilling.

www.sciencemag.org SCIENCE VOL 302 19 DECEMBER 2003

分子のBEC(3) ⁶Li₂

VOLUME 91, NUMBER 25

PHYSICAL REVIEW LETTERS

week ending 19 DECEMBER 2003

Observation of Bose-Einstein Condensation of Molecules

M.W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA (Received 27 November 2003; published 15 December 2003)

We have observed Bose-Einstein condensation of molecules. When a spin mixture of fermionic ⁶Li atoms was evaporatively cooled in an optical dipole trap near a Feshbach resonance, the atomic gas was converted into ⁶Li₂ molecules. Below 600 nK, a Bose-Einstein condensate of up to 900 000 molecules was identified by the sudden onset of a bimodal density distribution. This condensate realizes the limit of tightly bound fermion pairs in the crossover between BCS superfluidity and Bose-Einstein condensation.

FIG. 1. Observation of Bose-Einstein condensation in a molecular gas. Shown are three single-shot absorption images after 6 ms of ballistic expansion for progressively lower temperatures (left to right). The appearance of a dark spot marks the onset of BEC. The field of view for each image is 1.4×1.4 mm². The long axis of the optical dipole trap was vertical in the image.

問題点:生成された分子は不安定

非常に高い振動・回転準位の分子 他の原子、分子と衝突して、エネルギーを散逸

BECイントロダクション

ボース・アインシュタイン凝縮(BEC)とは?

低温で、最低エネルギー準位を占める粒子 数が巨視的な数になる現象 (物理学辞典より)

原子気体のBECの条件

 $\rho_{ps} > 2.612$

アインシュタインの予言(1925)

$$ho_{ps}\equiv n{\lambda_{dB}}^3$$
 位相空間密度 (最低エネルギー準位を占める粒子数)

$$\lambda_{dB} \equiv \frac{h}{\sqrt{2\pi m k_{B}T}}$$
熱的ドブロイ波長
(波束の幅)

波束が互いに重なり始めたときに、BECが起こる!

ボース・アインシュタイン凝縮の歴史

- 1911 水銀で超伝導(Onnes)~4.2K
- 1923 物質波の概念(de-Broglie)
- **1924** ボース統計、ボース凝縮の理論(Bose, Einstein)
- 1925 行列力学(Heizenberg)
- 1926 波動力学(Schrödinger)
- 1927 He の発見~2.17K
- 1933 マイスナー効果

1938 超流動、ボース凝縮による説明3.13K(London)

- 1957 BCS理論による超伝導の説明
- **1960 レーザーの発明**(Maiman)
- 1975 レーザー冷却のアイデア(Hänsch,Shallow)
- 1980~ レーザーによる原子線の減速(Phillips他)~mK
- 1985 レーザーによる3次元冷却(Chu)~240µK
- 1988 偏向冷却(Phillips, Cohen-Tannoudji)~3µK
- **1995 蒸発冷却、ボース凝縮実現** 2001年ノーベル (Cornel, Wieman, Ketterle) ~ 100nk 物理学賞

1997年ノーベル

物理学賞

気体原子BECと光レーザー

共通する性質

・単一の量子状態にマクロな数の粒子(N₀/N~100%)
・粒子間相互作用が比較的小さい(もしくは無視できる)
・コヒーレンス(1次、2次、3次、...)

気体原子BECは原子レーザー(コヒーレント原子波)